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Abstract. While many multi-robot coordination problems can be solved opti-
mally by exact algorithms, solutions are often not scalable in the number of
robots. Multi-Agent Reinforcement Learning (MARL) is gaining increasing at-
tention in the robotics community as a promising solution to tackle such problems.
Nevertheless, we still lack the tools that allow us to quickly and efficiently find
solutions to large-scale collective learning tasks. In this work, we introduce the
VectorizedMulti-Agent Simulator (VMAS). VMAS is an open-source framework
designed for efficient MARL benchmarking. It is comprised of a vectorized 2D
physics engine written in PyTorch and a set of twelve challenging multi-robot
scenarios. Additional scenarios can be implemented through a simple and mod-
ular interface. We demonstrate how vectorization enables parallel simulation on
accelerated hardware without added complexity.When comparing VMAS toOpe-
nAI MPE, we show how MPE’s execution time increases linearly in the number
of simulations while VMAS is able to execute 30,000 parallel simulations in
under 10s, proving more than 100× faster. Using VMAS’s RLlib interface, we
benchmark our multi-robot scenarios using various Proximal Policy Optimiza-
tion (PPO)-based MARL algorithms. VMAS’s scenarios prove challenging in
orthogonal ways for state-of-the-art MARL algorithms. The VMAS framework
is available at: https://github.com/proroklab/VectorizedMultiAgentSimulator. A
video of VMAS scenarios and experiments is available here1

Keywords: simulator, multi-robot learning, vectorization

1 Introduction

Many real-world problems require coordination ofmultiple robots to be solved.However,
coordination problems are commonly computationally hard. Examples include path-
planning [14], task assignment [25], and area coverage [39]. While exact solutions exist,
their complexity grows exponentially in the number of robots [3]. Metaheuristics [6]
provide a fast and scalable solutions, but lack in optimality. Multi-Agent Reinforcement
Learning (MARL) can be used as a scalable approach to find near-optimal solutions
to these problems [34]. In MARL, agents trained in simulation collect experiences by
interacting with the environment, and train their policies (typically represented with
deep neural networks) through a reward signal.

1https://youtu.be/aaDRYfiesAY

https://github.com/proroklab/VectorizedMultiAgentSimulator
https://youtu.be/aaDRYfiesAY
https://youtu.be/aaDRYfiesAY
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(a) Transport (b)Wheel (c) Balance (d) Give way

(e) Football (f) Passage (g) Reverse Transport (h) Dispersion

(i) Dropout (j) Flocking (k) Discovery (l)Waterfall

Fig. 1: Multi-robot scenarios introduced in VMAS. Robots (blue shapes) interact among each
other and with landmarks (green, red, and black shapes) to solve a task.

However, current MARL approaches present several issues. Firstly, the training
phase can require significant time to converge to optimal behavior. This is partially due
to the sample efficiency of the algorithm, and partially to the computational complexity
of the simulator. Secondly, current benchmarks are specific to a predefined task and
mostly tackle unrealistic videogame-like scenarios [28,31], far from real-world multi-
robot problems. This makes research in this area fragmented, with a new simulation
framework being implemented for each new task introduced. Multi-robot simulators,
on the other hand, prove to be more general, but their high fidelity and full-stack
simulation results in slow performance, preventing their applicability to MARL. Full-
stack learning can significantly hinder training performance. Learning can be made
more sample-efficient if simulation is used to solve high-level multi-robot coordination
problems, while leaving low-level robotic control to first-principles-based methods.
Motivated by these reasons, we introduce VMAS, a vectorized multi-agent simula-

tor. VMAS is a vectorized 2D physics simulator written in PyTorch [22], designed for
efficient MARL benchmarking. It simulates agents and landmarks of different shapes
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and supports torque, elastic collisions and custom gravity. Holonomic motion models
are used for the agents to simplify simulation. Vectorization in PyTorch allows VMAS
to perform simulations in a batch, seamlessly scaling to tens of thousands of parallel
environments on accelerated hardware. With the termGPU vectorizationwe refer to the
Single Instruction Multiple Data (SIMD) execution paradigm available inside a GPU
warp. This paradigm permits to execute the same instruction on a set of parallel simu-
lations in a batch. VMAS has an interface compatible with OpenAI Gym [7] and with
the RLlib library [15], enabling out-of-the-box integration with a wide range of RL
algorithms. VMAS also provides a framework to easily implement custom multi-robot
scenarios. Using this framework, we introduce a set of 12 multi-robot scenarios repre-
senting difficult learning problems. Additional scenarios can be implemented through
a simple and modular interface. We vectorize and port all scenarios from OpenAI
MPE [16] in VMAS. We benchmark four of VMAS’s new scenarios using three MARL
algorithms based on Proximal Policy Optimization (PPO) [29]. We show the benefits
of vectorization by benchmarking our scenarios in the RLlib [15] library. Our scenarios
prove to challenge state-of-the-art MARL algorithms in complementary ways.

Contributions. We now list the main contributions of this work:

– We introduce the VMAS framework. A vectorized multi-agent simulator which
enables MARL training at scale. VMAS supports inter-agent communication and
customizable sensors, such as LIDARs.

– We implement a set of twelve multi-robot scenarios in VMAS, which focus on
testing different collective learning challenges including: behavioural heterogeneity,
coordination through communication, and adversarial interaction.

– We port and vectorize all scenarios from OpenAI MPE [16] into VMAS and run a
performance comparison between the two simulators. We demonstrate the benefits
of vectorization in terms of simulation speed, showing that VMAS is up to 100×
faster than MPE.

The VMAS codebase is available here2.

2 Related work

In this section, we review the related literature in the fields of multi-agent and multi-
robot simulation, highlighting the core gaps of each field. Furthermore, we compare the
most relevant simulation frameworks with VMAS in Tab. 1.

Multi-agent reinforcement learning environments. A significant amount of work
exists in the context of MARL to address the issues of multi-robot simulation for
learning hard coordination strategies. Realistic GPU-accelerated simulators and engines
have been proposed. Isaac [17] is a proprietary NVIDIA simulator used for realistic
robotic simulation in reinforcement learning. Instead of using environment vectorization
to accelerate learning, it uses concurrent execution of multiple training environments
in the same simulation instance. Despite of this, its high-fidelity simulation makes it
computationally expensive for high-level MARL problems. Brax [8] is a vectorized 3D

2https://github.com/proroklab/VectorizedMultiAgentSimulator

https://github.com/proroklab/VectorizedMultiAgentParticleSimulator
https://github.com/proroklab/VectorizedMultiAgentSimulator
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physics engine introduced by Google. It uses the Jax [5] library to achieve environment
batching and full-differentiability. However, computational issues occurwhen scaling the
number of simulated agents, leading to stalled environments with just 20 agents. There
also exist projects for single-agent vectorized environments [13,35], but the complexity
of extending these to the multi-agent domain is non-trivial.
The core benchmark environments of the MARL literature focus on high-level

inter-robot learning. Multiagent Particle Environments (MPE) [16] are a set of envi-
roments created by OpenAI. They share VMAS’s principles of modularity and ease
of new scenario creation, without providing environment vectorization. MAgent [38]
is a discrete-world environment supporting a high number of agents. Multi-Agent-
Learning-Environments [10] is another simplified discrete-world set of environments
with a range of different multi-robot tasks. Multi-Agent-Emergence-Environments [2] is
a customizable OpenAI 3D simulator for hide-and-seek style games. Pommerman [26] is
a discretized playground for learning multi-agent competitive strategies. SMAC [28] is a
very popular MARL benchmark based on the Starcraft 2 videogame. Neural-MMO [31]
is another videogame-like set of environments where agents learn to survive in large
populations. Google Research Football [12] is a football simulation with a suite of sce-
narios that test different aspects of the game. Gym-pybullet-drones [21] is a realistic
PyBullet simulator for multi-quadricopters control. Particle Robots Simulator [30] is
a simulator for particle robots, which require high coordination strategies to overcome
actuation limitations and achieve high-level tasks. Multi-Agent Mujoco [23] consists in
multiple agents controlling different body parts of a single Mujoco [32] agent. While
all these environments provide interesting MARL benchmarks, most of them focus on
specific tasks. Furthermore, none of these environments provide GPU vectorization,
which is key for efficient MARL training. We present a comparison between VMAS and
all the aforementioned environments in Tab. 1.

Multi-robot simulators. Video-game physics engines such as Unity and Unreal
Engine grant realistic simulation that can be leveraged for multi-agent robotics. Both
make use of the GPU-accelerated NVIDIA PhysX. However, their generality causes high
overheads when using them for robotics research. Other popular physics engines are
Bullet, Chipmunk, Box2D, and ODE. These engines are all similar in their capabilities
and prove easier to adopt due to the availability of Python APIs. Thus, they are often the
tool of choice for realistic robotic simulation. However, because they do not leverage
GPU-accelerated batched simulation, these tools lead to performance bottlenecks in
MARL training.
The most widely known robotic simulators are Gazebo [11] and Webots [18]. Their

engines are based on the ODE 3D dynamics library. These simulators support a wide
range of robot models, sensors, and actuators, but suffer from significant performance
loss when scaling in the number of agents. Complete simulation stall is shown to occur
with as few as 12 robots [20]. For this reason, Argos [24] has been proposed as a
scalable multi-robot simulator. It is able to simulate swarms in the thousands of agents
by assigning parts of the simulation space to different physics engines with different
simulation goals and fidelity. Furthermore, it uses CPU parallelization through multi-
threading. Despite these features, none of the simulators described are fast enough to
be usable in MARL training. This is because they prioritize realistic full-stack multi-
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Table 1: Comparison of multi-agent and multi-robot simulators and environments.
Vector𝑎 State𝑏 Comm𝑐 Action𝑑 PhysEng𝑒 #Agents 𝑓 Gen𝑔 Extℎ MRob𝑖 MARL 𝑗 RLlib𝑘

Brax [8] ✓ C ✗ C 3D < 10 ✓ ✓ ✗ ✗ ✗

MPE [16] ✗ C C+D C+D 2D < 100 ✓ ✓ ✗ ✓ ✓

MAgent [38] ✗ D ✗ D ✗ > 1000 ✗ ✗ ✗ ✓ ✓

MA-Learning-Environments [10] ✗ D ✗ D ✗ < 10 ✓ ✗ ✓ ✓ ✗

MA-Emergence-Environments [2] ✗ C ✗ C+D 3D < 10 ✗ ✗ ✗ ✓ ✗

Pommerman [26] ✗ D ✗ D ✗ < 10 ✗ ✗ ✗ ✓ ✗

SMAC [28] ✗ C ✗ D ✗ < 100 ✗ ✓ ✗ ✓ ✓

Neural-MMO [31] ✗ C ✗ C+D ✗ < 1000 ✗ ✓ ✗ ✓ ✓

Google research football [12] ✗ C ✗ D 2D < 100 ✗ ✓ ✗ ✓ ✓

gym-pybullet-drones [21] ✗ C ✗ C 3D < 100 ✗ ✓ ✓ ✓ ✓

Particle robots simulator [30] ✗ C ✗ C+D 2D < 100 ✗ ✓ ✓ ✓ ✗

MAMujoco [23] ✗ C ✗ C 3D < 10 ✗ ✗ ✗ ✓ ✗

Gazebo [11] ✗ C C+D C+D 3D < 10 ✓ ✓ ✓ ✗ ✗

Webots [18] ✗ C C+D C+D 3D < 10 ✓ ✓ ✓ ✗ ✗

ARGOS [24] ✗ C C+D C+D 2D&3D < 1000 ✓ ✓ ✓ ✗ ✗

VMAS ✓ C C+D C+D 2D < 100 ✓ ✓ ✓ ✓ ✓

𝑎 Vectorized
𝑏 Continuous state (C) or discrete state/grid world (D)
𝑐 Continuous communication (C) or discrete communication (D) inside the simulator
𝑑 Continuous actions (C) or discrete actions (D)
𝑒 Type of physics engine
𝑓 Number of agents supported
𝑔 General purpose simulator: any type of task can be created
ℎ Extensibility (API for creating new scenarios)
𝑖 Contains multi-robot tasks
𝑗 Made for Multi-Agent Reinforcement Learning (MARL)
𝑘 Compatible with RLlib framework [15]

robot simulation over speed, and they do not leverage GPU acceleration for parallel
simulations. This focus on realism is not always necessary in MARL. In fact, most
collective coordination problems can be decoupled from low-level problems relating
to sensing and control. When these problems can be efficiently solved independently
without loss of generality, fast high-level simulation provides an important tool. This
insight is the key factor motivating the holonomicity assumption in VMAS.

3 The VMAS platform

The unique characteristic thatmakesVMASdifferent from the relatedworks compared in
Tab. 1 is the fact that our platform brings together multi-agent learning and environment
vectorization. Vectorization is a key component to speed-up MARL training. In fact,
an on-policy training iteration3 is comprised of simulated team rollouts and a policy
update. During the rollout phase of iteration 𝑘 , simulations are performed to collect
experiences from the agents’ interactions with the environment according to their policy

3Here we illustrate an on-policy training iteration, but simulation is a key component of any
type of MARL algorithm
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𝜋𝑘 . The collected experiences are then used to update the team policy. The new policy
𝜋𝑘+1 will be employed in the rollout phase of the next training iteration. The rollout
phase usually constitutes the bottleneck of this process. Vectorization allows parallel
simulation and helps alleviate this issue.
Inspired by the modularity of some existing solutions, like MPE [16], we created

our framework as a new scalable platform for running and creating MARL benchmarks.
With this goal in mind, we developed VMAS following a set of tenets:

– Vectorized. VMAS vectorization can step any number of environments in parallel.
This significantly reduces the time needed to collect rollouts for training in MARL.

– Simple. Complex vectorized physics engines exist (e.g., Brax [8]), but they do not
scale efficiently when dealing with multiple agents. This defeats the computational
speed goal set by vectorization. VMAS uses a simple custom 2D dynamics engine
written in PyTorch to provide fast simulation.

– General. The core of VMAS is structured so that it can be used to implement
general high-level multi-robot problems in 2D. It can support adversarial as well
as cooperative scenarios. Holonomic robot simulation shifts focus to high-level
coordination, obviating the need to learn low-level controls using MARL.

– Extensible. VMAS is not just a simulator with a set of environments. It is a
framework that can be used to create new multi-agent scenarios in a format that
is usable by the whole MARL community. For this purpose, we have modularized
our framework to enable new task creation and introduced interactive rendering to
debug scenarios.

– Compatible. VMAS has multiple wrappers which make it directly compatible with
different MARL interfaces, including RLlib [15] and Gym [7]. RLlib has a large
number of already implemented RL algorithms.

Let us break down VMAS’s structure in depth.
Interface. The structure ofVMAS is illustrated in Fig. 2. It has a vectorized interface,

which means that an arbitrary number of environments can be stepped in parallel in a
batch. In Sec. 5, we demonstrate how vectorization grants important speed-ups on the
CPU and seamless scaling on the GPU. While the standard simulator interface uses
PyTorch [22] to enable feeding tensors directly as input/output, we provide wrappers for
the standard non-vectorized OpenAI Gym [7] interface and for the vectorized interface
of the RLlib [15] framework. This enables users to effortlessly access the range of RL
training algorithms already available in RLlib. Actions for all environments and agents
are fed to VMAS for every simulation step. VMAS supports movement and inter-agent
communication actions, both of which can be either continuous or discrete. The interface
of VMAS provides rendering through Pyglet [1].

Scenario. Scenarios encode the multi-agent task that the team is trying to solve. Cus-
tom scenarios can be implemented in a few hours and debugged using interactive render-
ing. Interactive rendering is a featurewhere agents in scenarios can be controlled by users
in a videogame-like fashion and all environment-related data is printed on screen. To
implement a scenario, it is sufficient to define a few functions: make_world creates the
agents and landmarks for the scenario and spawns them in the world, reset_world_at
resets a specific environment in the batch or all environments at the same time, reward
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Fig. 2: VMAS structure. VMAS has a vectorized MARL interface (left) with wrappers for com-
patibility with OpenAI Gym [7] and the RLlib RL library [15]. The default VMAS interface uses
PyTorch [22] and can be used for feeding input already on the GPU. Multi-agent tasks in VMAS
are defined as scenarios (center). To define a scenario, it is sufficient to implement the listed
functions. Scenarios access the VMAS core (right), where agents and landmarks are simulated in
the world using a 2D custom written physics module.

returns the reward for one agent for all environments, observation returns the agent’s
observations for all environments. Optionally, done and info can be implemented to
provide an ending condition and extra information. Further documentation on how to
create new scenarios is available in the repository2 and in the code.

Core. Scenarios interact with the core. This is where the world simulation is stepped.
The world contains 𝑛 entities, which can be agents or landmarks. Entities have a shape
(sphere, box, or line) and a vectorized state (x𝑖 , ¤x𝑖 , 𝜃𝑖 , ¤𝜃𝑖), ∀𝑖 ∈ [1..𝑛] ≡ 𝑁 , which
contains their position x𝑖 ∈ R2, velocity ¤x𝑖 ∈ R2, rotation 𝜃𝑖 ∈ R, and angular velocity
¤𝜃𝑖 ∈ R for all environments. Entities have a mass 𝑚𝑖 ∈ R and a maximum speed and
can be customized to be movable, rotatable, and collidable. Agents’ actions consist of
physical actions, represented as forces f𝑎

𝑖
∈ R2, and optional communication actions.

In the current state of the simulator, agents cannot control their orientation. Agents
can either be controlled from the interface or by an “action script” defined in the
scenario. Optionally, the simulator can introduce noise to the actions and observations.
Custom sensors can be added to agents. We currently support LIDARs. The world has
a simulation step 𝛿𝑡, velocity damping coefficient 𝜁 , and customizable gravity g ∈ R2.
VMAS has a force-based physics engine. Therefore, the simulation step uses the

forces at time 𝑡 to integrate the state by using a semi-implicit Euler method [19]:


f𝑖 (𝑡) = f𝑎

𝑖
(𝑡) + f𝑔

𝑖
+∑

𝑗∈𝑁\{𝑖 } f𝑒
𝑖 𝑗
(𝑡)

¤x𝑖 (𝑡 + 1) = (1 − 𝜁) ¤x𝑖 (𝑡) + f𝑖 (𝑡)
𝑚𝑖
𝛿𝑡

x𝑖 (𝑡 + 1) = x𝑖 (𝑡) + ¤x𝑖 (𝑡 + 1)𝛿𝑡
, (1)

https://github.com/proroklab/VectorizedMultiAgentParticleSimulator
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where f𝑎
𝑖
is the agent action force, f𝑔

𝑖
= 𝑚𝑖g is the force deriving from gravity and f𝑒

𝑖 𝑗
is

the environmental force used to simulate collisions between entities 𝑖 and 𝑗 . It has the
following form:

f𝑒𝑖 𝑗 (𝑡) =

𝑐

x𝑖 𝑗 (𝑡)
∥x𝑖 𝑗 (𝑡)∥ 𝑘 log

(
1 + 𝑒

−(∥x𝑖 𝑗 (𝑡 )∥−𝑑min)
𝑘

)
if



x𝑖 𝑗 (𝑡)

 ⩽ 𝑑min
0 otherwise

. (2)

Here, 𝑐 is a parameter regulating the force intensity. x𝑖 𝑗 is the relative position between
the closest points on the shapes of the two entities. 𝑑min is the minimum distance
allowable between them. The term inside the logarithm computes a scalar proportional
to the penetration of the two entities, parameterized by a coefficient 𝑘 . This term is then
multiplied by the normalized relative position vector. Collision intensity and penetration
can be tuned by regulating 𝑐 and 𝑘 . This is the same collision system used in OpenAI
MPE [16].
The simulation step used for the linear state is also applied to the angular state:

𝜏𝑖 (𝑡) =
∑

𝑗∈𝑁\{𝑖 }




r𝑖 𝑗 (𝑡) × f𝑒
𝑖 𝑗
(𝑡)





¤𝜃𝑖 (𝑡 + 1) = (1 − 𝜁) ¤𝜃𝑖 (𝑡) + 𝜏𝑖 (𝑡)

𝐼𝑖
𝛿𝑡

𝜃𝑖 (𝑡 + 1) = 𝜃𝑖 (𝑡) + ¤𝜃𝑖 (𝑡 + 1)𝛿𝑡
. (3)

Here, r𝑖 𝑗 ∈ R2 is the vector from the center of the entity to the colliding point, 𝜏𝑖 is the
torque, and 𝐼𝑖 is the moment of inertia of the entity. The rules regulating the physics
simulation in the core are basic 2D dynamics implemented in a vectorized manner using
PyTorch. They simulate holonomic (unconstrained motion) entities only.

4 Multi-robot scenarios

Alongside VMAS, we introduce a set of 12 multi-robot scenarios. These scenarios
contain various multi-robot problems, which require complex coordination—like lever-
aging heterogeneous behaviour and inter-agent communication—to be solved. While
the ability to send communication actions is not used in these scenarios, communication
can be used in the policy to improve performance. For example, Graph Neural Networks
(GNNs) can be used to overcome partial observability through information sharing [4].
Each scenario delimits the agents’ input by defining the set of their observations. This

set typically contains the minimum observation needed to solve the task (e.g., position,
velocity, sensory input, goal position). Scenarios can be made arbitrarily harder or easier
by modifying these observations. For example, if the agents are trying to transport a
package, the precise relative distance to the package can be removed from the agent
inputs and replaced with LIDAR measurements. Removing global observations from a
scenario is a good incentive for inter-agent communication.
All tasks contain numerous parametrizable components. Every scenario comes with

a set of tests, which run a local heuristic on all agents. Furthermore, we vectorize and
port all 9 scenarios from MPE [16] to VMAS. In this section, we give a brief overview
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of our new scenarios. For more details (e.g., observation space, reward, etc.) you can
find in-depth descriptions in the VMAS repository2.

Transport (Fig. 1a). 𝑁 agents have to push 𝑀 packages to a goal. Packages have a
customizable mass and shape. Single agents are not able to move a high-mass package
by themselves. Cooperation with teammates is thus needed to solve the task.

Wheel (Fig. 1b). 𝑁 agents have to collectively rotate a line. The line is anchored to the
origin and has a parametrizable mass and length. The team’s goal is to bring the line
to a desired angular velocity. Lines with a high mass are impossible to push for single
agents. Therefore, the team has to organize with agents on both sides to increase and
reduce the line’s velocity.

Balance (Fig. 1c). 𝑁 agents are spawned at the bottom of a world with vertical gravity.
A line is spawned on top of them. The agents have to transport a spherical package,
positioned randomly on top of the line, to a given goal at the top. The package has a
parametrizable mass and the line can rotate.

Give Way (Fig. 1d). Two agents start in front of each other’s goals in a symmetric
environment. To solve the task, one agent has to give way to the other by using a narrow
space in the middle of the environment.

Football (Fig. 1e). A team of 𝑁 blue agents competes against a team of 𝑀 red agents
to score a goal. By default, red agents are controlled by a heuristic AI, but self-play
is also possible. Cooperation among teammates is required to coordinate attacking and
defensive maneuvers. Agents need to communicate and assume different behavioural
roles in order to solve the task.

Passage (Fig. 1f). 5 agents, starting in a cross formation, have to reproduce the same
formation on the other side of a barrier. The barrier has 𝑀 passages (𝑀 = 1 in the
figure). Agents are penalized for colliding amongst each other and with the barrier. This
scenario is a generalization of the one considered in [4].

Reverse transport (Fig. 1g). This task is the same as Transport, except only one package
is present. Agents are spawned inside of it and need to push it to the goal.

Dispersion (Fig. 1h). There are 𝑁 agents and 𝑁 food particles. Agents start in the same
position and need to cooperatively eat all food.MostMARL algorithms cannot solve this
task (without communication or observations from other agents) as they are constrained
by behavioural homogeneity deriving from parameter sharing. Heterogeneous behaviour
is thus needed for each agent to tackle a different food particle.

Dropout (Fig. 1i). 𝑁 agents have to collectively reach one goal. To complete the task,
it is enough for only one agent to reach the goal. The team receives an energy penalty
proportional to the sum of all the agents’ controls. Therefore, agents need to organize
themselves to send only the closest robot to the goal, saving as much energy as possible.

Flocking (Fig. 1j). 𝑁 agents have to flock around a target without colliding among
each other and 𝑀 obstacles. Flocking has been an important benchmark in multi-robot

https://github.com/proroklab/VectorizedMultiAgentParticleSimulator
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coordination for years, with first solutions simulating behaviour according to local
rules [27], and more recent work using learning-based approaches [33]. In contrast to
related work, our flocking environment contains static obstacles.

Discovery (Fig. 1k). 𝑁 agents have to coordinate to cover 𝑀 targets as quickly as
possible while avoiding collisions. A target is considered covered if 𝐾 agents have
approached a target at a distance of at least 𝐷. After a target is covered, the 𝐾 covering
agents each receive a reward and the target is re-spawned at a random position. This
scenario is a variation of the Stick Pulling Experiment [9] and while it can be solved
without communication, it has been shown that communication significantly improves
performance for 𝑁 < 𝑀 .

Waterfall (Fig. 1l). 𝑁 agents move from top to bottom through a series of obstacles.
This is a testing scenario that can be used to discover VMAS’s functionalities.

5 Comparison with MPE

In this section, we compare the scalability of VMAS and MPE [16]. Given that we
vectorize and port all the MPE scenarios in VMAS, we can compare the two simulators
on the same MPE task. The task chosen is “simple_spread”, as it contains multiple
collidable agents in the same environment. VMASandMPEuse two completely different
execution paradigms:VMAS, being vectorized, leverages the Single InstructionMultiple
Data (SIMD) paradigm, while MPE uses the Single Instruction Single Data (SISD)
paradigm. Therefore, it is sufficient to report the benefits of this paradigm shift on only
one task, as the benefits are task-independent.
In Fig. 3, we can see the growth in execution time with respect to the number of

environments stepped in parallel for the two simulators. MPE runs only on the CPU,
while VMAS, using PyTorch, runs both on the CPU and on the GPU. In this experiment,
we compare the two simulators on an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz
and we also run VMAS on an NVIDIA GeForce RTX 2080 Ti. The results show the
impact of vectorization on simulation speed. On the CPU, VMAS is up to 5x faster
than MPE. On the GPU, the simulation time for VMAS is independent of the number
of environments, and runs up to 100× faster. The same results can be reproduced
on different hardware. In the VMAS’s repository2 we provide a script to repeat this
experiment.

6 Experiments and benchmarks

We run a set of training experiments to benchmark the performance ofMARL algorithms
on four VMAS scenarios. Thanks to VMAS’s vectorization, we are able to perform a
training iteration (comprised of 60,000 environment interactions and deep neural net-
work training) in 25s on average. The runs reported in this section all took under 3 hours
to complete. The models compared are all based on Proximal Policy Optimization [29],
an actor-critic RL algorithm. The actor is a Deep Neural Network (DNN) which outputs
actions given the observations and the critic is a DNN (used only during training) which,

https://github.com/proroklab/VectorizedMultiAgentParticleSimulator
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Fig. 3: Comparison of the scalability of VMAS and MPE [16] in the number of parallel environ-
ments. In this plot, we show the execution time of the “simple_spread” scenario for 100 steps.
MPE does not support vectorization and thus cannot be run on a GPU.

given the observations, outputs a value representing the goodness of the current state
and action. We refer to the actor and critic as centralized when they have access to all
the agents’ observations and output all the agent’s actions/values and we call them de-
centralized when they only map one agent’s observations to its action/value. The models
compared are:

– CPPO: This model uses a centralized critic and actor. It treats the multi-agent
problem as a single-agent problem with one super-agent.

– MAPPO [37]: This model uses a centralized critic and a decentralized actor. There-
fore, the agents act independently, with local decentralized policies, but are trained
with centralized information.

– IPPO [36]: This model uses a decentralized critic and actor. Every agent learns and
acts independently. Model parameters are shared among agents so they can benefit
from each other’s experiences.

– HetIPPO: We customize IPPO to disable parameter sharing, making each agent’s
model unique.

– Heuristic: This is a hand-designed decentralized heuristic different for each task.

Experiments are run in RLlib [15] using the vectorized interface. We run all al-
gorithms for 400 training iterations. Each training iteration is performed over 60,000
environment interactions. We plot the mean and standard deviation of the mean episode
reward4 over 10 runs with different seeds. The model used for all critics and actors is a
two layer Multi Layer Perceptron (MLP) with hyperbolic tangent activations. A video
of the learned policies is available at this link1. In the following, we discuss the results
for the trained scenarios.
Transport (Fig. 4a). In the Transport environment, only IPPO is able to learn the
optimal policy. This is because the other models, which have centralized components,
have an input space consisting of the concatenation of all the agents’ observations.
Consequently, centralized architectures fail to generalize in environments requiring a

4The episode reward mean is the mean of the total rewards of episodes contained in the
training iteration

https://youtu.be/aaDRYfiesAY
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Fig. 4: Benchmark performance of different PPO-based MARL algorithms in four VMAS sce-
narios. Experiments are run in RLlib [15]. Each training iteration is performed over 60,000
environment interactions. We plot the mean and standard deviation of the mean episode reward4
over 10 runs with different seeds.

high initial exploration like this one, where there is a high variance in possible joint
states (and therefore there is a low probability that a similar state will be encountered).

Wheel (Fig. 4b). TheWheel environment proved to be a hard task forMARL algorithms.
Here, all models were not able to solve the task and performed worse than the heuristic.

Balance (Fig. 4c). In Balance, all models were able to solve the task and outperform the
heuristic. However, this is largely due to the use of a big observation space containing
global information. The task can be made arbitrarily harder by removing part of the
observation space and thus increasing partial observability.

Give Way (Fig. 4d). In the Give Way scenario, it is shown that only algorithms able
to develop heterogeneous agent behaviour can solve the environment. In fact, IPPO and
MAPPO, which use parameter sharing and decentralized actors, fail this scenario. On
the other hand, it is shown that the scenario can be solved either through a centralized
actor (CPPO) or by disabling parameter sharing and allowing agent policies to be
heterogeneous (HetIPPO).
The experimental results confirm thatVMASproposes a selection of scenarioswhich

prove challenging in orthogonal ways for current state-of-the-art MARL algorithms. We
show that there exists no one-fits-all solution and that our scenarios can provide a valuable
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benchmark for newMARL algorithms. In addition, vectorization enables faster training,
which is key to a wider adoption of multi-agent learning in the robotics community.

7 Conclusion

In this work, we introduced VMAS, an open-source vectorized simulator for multi-
robot learning. VMAS uses PyTorch and is composed of a core vectorized 2D physics
simulator and a set of multi-robot scenarios, which encode hard collective robotic
tasks. The focus of this framework is to act as a platform for MARL benchmarking.
Therefore, to incentivize contributions from the community, wemade implementing new
scenarios as simple and modular as possible. We showed the computational benefits of
vectorization with up to 30,000 parallel simulations executed in under 10s on a GPU.
We benchmarked the performance of MARL algorithms on our scenarios. During our
training experiments, we were able to collect 60,000 environment steps and perform a
training iteration in under 25s. Experiments also showed how VMAS scenarios prove
difficult in orthogonal ways for state-of-the-art MARL algorithms. In the future, we plan
to extend the features of VMAS to widen its adoption, continuing to implement new
scenarios and benchmarks. We are also interested in modularizing the physics engine,
enabling users to swap vectorized engines with different fidelities and computational
demands.
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