
TorchRL is an open source
data-driven, general, decision-making
library for PyTorch.

➔ Supports a wide range of RL domains:
single-agent and multi-agent RL,
online and offline RL, off-policy and
on-policy RL, Model-free and
Model-based RL.

➔ It is a PyTorch domain library, similar
to TorchVision or TorchAudio, aiming
to better support the RL community
within the PyTorch ecosystem.

Abstract

Motivation

TorchRL ecosystem

Creating a truly general Reinforcement
Learning (RL) library has historically
proven very challenging due to several
factors:

➔ Algorithmic Complexity: RL
algorithms comprise numerous
heterogeneous components that
need to be combined.

➔ Dynamic Data Requirements:
Components have varying input and
output data requirements. Libraries
are forced libraries to sacrifice
flexibility to ensure good integration.

➔ Specialized Use Cases: Frameworks
should accommodate specialized
sub-domains (e.g. Offline RL, MARL)
without redundancy.

➔ Scaling Complexity: Efficiently scaling
poses greater challenges compared
to supervised learning.

➔ Long-Term Support: Historically,
frameworks have lacked sustained
support, affecting viability over time.

TorchRL Design Principles

Powered by TensorDict

TorchRL design principles tackle RL
implementation challenges to keep
PyTorch on the forefront of RL research
and applications:

➔ Standalone Components: Low-level
abstractions to solve independent,
limited-scope RL problems.

➔ Efficient Data Carrier: Flexible and
efficient communication between
components, irrespective of their
data requirements, with a new data
carrier, the TensorDict.

➔ Breadth over Depth: Diversity of
well-tested components to be used
as the building blocks to cover a
wide spectrum of RL sub-domains.

➔ Minimal Core Dependencies:
primarily PyTorch and TensorDict.

➔ Reliability and Long Term Support:
Within the PyTorch ecosystem,
adhering to quality standards,
ensuring maintenance.

TensorDict is a dictionary-like and
tensor-like class.

➔ Supports tensor operations like
indexing, stacking, etc and
point-to-point communication in
distributed settings.

➔ Has support for non-tensor data, data
serialisation and distributed
capabilities.

➔ Transcends RL domain. It is already
being used in projects outside this
field.

➔ TorchRL has seen rapid growth
since its initial release.

➔ The library has more than 140
collaborators and contributors.

➔ Has an active community on
GitHub and Discord.

➔ Over 20 applied research teams
from academia and industry have
adopted TorchRL as a backend.

➔ The library features rich
documentation, tutorials, a
knowledge-base with RL insights,
and state-of-the-art code
implementations.

TensorDict for RL component
integration

➔ Key data-structure powering all of
TorchRL.

➔ If all our components read and write
to tensordicts, we create a system
that is agnostic to specific data
signatures and also allows for
straightforward replacement of
components with others to test
different ideas.

➔ It also makes our code much
readable, compact, and modular.

TensorDict

TorchRL Environments and Datasets

TorchRL training logic example

TorchRL Algorithms
Environments
➔ Gym / Gymnasium
➔ dm_control
➔ Brax
➔ EnvPool
➔ Habitat
➔ Isaac Gym
➔ Jumanji
➔ Melting Pot
➔ OpenML
➔ Petting Zoo
➔ RoboHive
➔ StarCraft

Multi-Agent
Challenge v2

➔ Vectorized
Multi-Agent
Simulator (VMAS)

Datasets
➔ D4RL, VD4RL
➔ GenDGRL
➔ Roboset
➔ OpenX
➔ OpenML
➔ Minari
➔ AtariDQN

A data-driven decision-making library for PyTorch
Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang, Gianni De Fabritiis, Vincent Moens

PaperCommunityTensorDictTorchRL

https://developer.nvidia.com/isaac-gym

