The impact of behavioral diversity in multi-agent reinforcement learning

Abstract

Many of the world’s most pressing issues, such as climate change and global peace, require complex collective problem-solving skills. Recent studies indicate that diversity in individuals’ behaviors is key to developing such skills and increasing collective performance. Yet behavioral diversity in collective artificial learning is understudied, with today’s machine learning paradigms commonly favoring homogeneous agent strategies over heterogeneous ones, mainly due to computational considerations. In this work, we employ diversity measurement and control paradigms to study the impact of behavioral heterogeneity in several facets of multi-agent reinforcement learning. Through experiments in team play and other cooperative tasks, we show the emergence of unbiased behavioral roles that improve team outcomes; how behavioral diversity synergizes with morphological diversity; how diverse agents are more effective at finding cooperative solutions in sparse reward settings; and how behaviorally heterogeneous teams learn and retain latent skills to overcome repeated disruptions. Overall, our results indicate that, by controlling diversity, we can obtain non-trivial benefits over homogeneous training paradigms, demonstrating that diversity is a fundamental component of collective artificial learning, an insight thus far overlooked.

Publication
In Preprint
Matteo Bettini
Matteo Bettini
PhD Candidate

Matteo’s research is focused on studying heterogeneity and resilience in multi-agent and multi-robot systems.

Ryan Kortvelesy
Ryan Kortvelesy
PhD Candidate

Ryan’s work focuses on multi-agent reinforcement learning. He is interested in the credit assignment problem, new graph neural network architectures and explainability (applying symbolic regression to multi-agent systems).

Amanda Prorok
Amanda Prorok
Professor

Amanda’s research focuses on multi-agent and multi-robot systems. Our mission is to find new ways of coordinating artificially intelligent agents (e.g., robots, vehicles, machines) to achieve common goals in shared physical and virtual spaces.

Related