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Abstract. Compact robotic platforms with powerful compute and actu-
ation capabilities are key enablers for practical, real-world deployments
of multi-agent research. This article introduces a tightly integrated hard-
ware, control, and simulation software stack on a fleet of holonomic
ground robot platforms designed with this motivation. Our robots, a
fleet of customised DJI Robomaster S1 vehicles, offer a balance between
small robots that do not possess sufficient compute or actuation capabil-
ities and larger robots that are unsuitable for indoor multi-robot tests.
They run a modular ROS2-based optimal estimation and control stack
for full onboard autonomy, contain ad-hoc peer-to-peer communication
infrastructure, and can zero-shot run multi-agent reinforcement learning
(MARL) policies trained in our vectorized multi-agent simulation frame-
work. We present an in-depth review of other platforms currently avail-
able, showcase new experimental validation of our system’s capabilities,
and introduce case studies that highlight the versatility and reliability
of our system as a testbed for a wide range of research demonstrations.
Our system as well as supplementary material is available online. 1

1 Introduction

Multi-agent robotics research necessitates robotic platforms that can be used as
deployment testbeds for rapid development and evaluations [36, 18, 54, 6, 45, 8,
38, 42, 56, 46, 52, 31, 58, 7, 15, 12, 14, 30, 57]. The choices for such platforms
are usually informed by several factors such as the configuration space of the
problem, the number of agents involved, and the computational sophistication
expected from each agent. For instance, small-scale robots, such as the Turtle-
bot [53], will frequently be limited in their agility of motion and are restricted
in their onboard computing capabilities. On the other hand, while larger robots
(Jackal [20] or AutoRally [55]) have greater manoeuvrability and can carry more
compute payloads, operating multiple of them in smaller research spaces can
be cost- and space- prohibitive. Successfully testing and developing multi-robot
solutions requires platforms that strike a fine balance between these objectives.

1 https://proroklab.github.io/cambridge-robomaster

https://proroklab.github.io/cambridge-robomaster
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Fig. 1. Shown from left to right: 1) A close-up of one RoboMaster equipped with
an NVidia Jetson Orin NX and a forward-facing camera 2) Two RoboMasters in a
SLAM-based collision avoidance scenario 3) Five RoboMasters moving through a nar-
row constriction after breaking formation [15] 4) Eight RoboMasters in a multi-robot
navigation scenario trained in VMAS [10].

In this article, we present an agile and affordable system and platform, shown
in Fig. 1 as a multi-robot team setup. Our system, an omnidirectional indoor
ground robot based on the DJI Robomaster S1, is affordable (starting at USD 689
in the base configuration to USD 1633 with all sensors and an Jetson Orin NX),
agile (we demonstrate indoor trajectory tracking capabilities of up to 4.45m/s
and accelerations of up to 5m/s2), versatile (we show experiments from clas-
sical control to zero-shot deployment of MARL policies trained in our simu-
lator VMAS [10]), and is easily replicable (our entire stack is open-sourced,
requiring minimal construction time). These have been made possible due to
our retrofitting of the onboard compute module and careful reverse engineering
of the main communication interface. We present two further contributions in
this work. First, through an expansive review of related systems and literature,
we contrast our solution against others’ and position our system at the frontier
of low-cost agile research platforms. Second, we describe enhancements to our
prior work (VMAS [10]) that enable rapid deployment of control policies learnt
in simulation onto this platform. We present evaluations and case studies that
corroborate the claims presented above, and showcase the wide range of research
avenues that this system makes accessible.

2 Related Work

In the last decade, a wide range of (multi-) robot platforms have been intro-
duced to the research community. Here we present an in-depth literature review
of commercial as well as research platforms. Our classification scheme will dif-
ferentiate between them based on their dynamics (Ackermann, differential, and
omnidirectional drive, as well as airborne/multirotor platforms), and also based
on their specific use cases in single- or multi-agent research. Since we are pri-
marily interested in multi-robot research, we investigate the tradeoff between
cost and speed of these platforms, as agility is an attribute we require in the
team (note that we use ‘speed’ and ‘agility’ interchangeably – this is a justified
simplification for indoor robots operating in confined spaces), and cost limits the
size of the team.
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Fig. 2. We compare a variety of different research and commercial robotic platforms
concerning their tradeoff between cost per unit and maximum velocity. We differentiate
between Ackermann, Differential, Airborne and Omnidirectional platforms as well as
between platforms specifically targetting multi-agent research. A clear correlation can
be seen between speed and cost, as well as a trend for multi-agent platforms to be
low-cost, but as a consequence slow. We draw the Pareto front as a dashed line, with
our proposed platform pushing the limits on the cost and speed tradeoff.

Fig. 2 visualises our survey in a 2D plot, and Tab. 1 provides detailed statis-
tics specifically for for omnidirectional drive robots. We find that the majority
of multi-agent research platforms utilize differential drive [45, 38, 6, 46, 56, 42,
52, 8, 18], thus positioning them in the bottom left corner of Fig. 2. The reason
is that such platforms tend to be designed to minimize cost, with tens of such
agents in mind. The slowest of these platforms is Alice [18] at 4 cm/s, and the
fastest is the Khepera IV [52] with 0.93m/s. Three ground-based platforms are
specifically geared towards multi-agent research but use dynamics other than
differential drive, specifically the Minicar [36], Cellulo[58], and Colias [7]. More
recently, slightly faster commercial differential drive robots have become popu-
lar [20, 23, 53, 25, 35], ranging from 0.22m/s for the Turtlebot 3 [53] to 2m/s
for the Diabolo [25].

From the bottom left, we can see two clusters emerging towards the top and
the right. The omnidirectional drive robots [58, 7, 48, 33, 13, 21, 34, 19, 49,
47, 3, 48, 22, 28, 41, 2] tend to move faster than differential drive, ranging from
0.15m/s (Cellulo [58]) to 2.7m/s (Festo Robotino [28]), but are also significantly
more expensive, with a mean cost of USD 13k.

Aerial platforms (such as multirotors) on the other hand are moderately
priced at a mean of USD 1600, and can move at much higher speeds of up to
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Table 1. We list critical specifications for omnidirectional robots from related work.
‘Multi-Agent’ indicates whether the platform is introduced as a multi-agent platform,
and ‘Commercial’ indicates whether the platform can be obtained commercially.

Brand/Uni Product
Vel

[m/s]
Cost
[USD]

Mass
[kg]

L x B x H
[mm]

Multi
Agent

Commercial

EPFL Cellulo [58] 0.15 150.0 0.18 73 × 80 × 80 ✓
Lincoln Uni Colias [7] 0.35 40.0 0.01 40 × 40 × 40 ✓
Hiwonder Jetauto [48] 0.50 650.0 4.00 324 × 659 × 260 ✓
Hangfa Compass Q2 [33] 0.75 3,500.0 16.00 430 × 330 × 115 ✓
KUKA youBot [13] 0.80 30,000.0 20.00 580 × 380 × 140 ✓
Agilex Limo [2] 1.00 3,600.0 4.80 251 × 220 × 322 ✓
Clearpath Ridgeback [21] 1.10 50,000.0 135.00 790 × 960 × 310 ✓
Hangfa Navigator Q2 [34] 1.20 20,300.0 35.00 520 × 480 × 240 ✓
Clearpath Dingo-O [19] 1.30 10,000.0 13.00 680 × 510 × 111 ✓
RoboWorks Mecabot X [49] 1.32 6,000.0 20.50 630 × 581 × 203 ✓
Lynxmotion A4WD3 [41] 1.40 900.0 5.55 372 × 374 × 152 ✓
RDK X3 [47] 1.50 590.0 1.93 181 × 236 × 185 ✓
Agilex Ranger Mini [3] 1.50 12,400.0 64.50 500 × 738 × 338 ✓
RoboWorks Mecabot Pro [48] 1.83 2,600.0 10.80 541 × 581 × 225 ✓
Clearpath Boxer [22] 2.00 60,000.0 127.00 550 × 750 × 340 ✓
Festo Robotino [28] 2.70 8,000.0 22.80 450 × 450 × 325 ✓
Cambridge RoboMaster (ours) 4.45 689.0 3.00 240 × 320 × 200 ✓ ✓

36m/s (Agilicious [29]), but come with other disadvantages compared to ground
robots, such as operational overheads like short runtime (minutes as opposed to
hours) or more challenging infrastructure needs (recovery and safety mechanisms
and the availability of accurate indoor tracking). These issues become particu-
larly noticeable and more pronounced when developing multi-agent systems –
the feasibility of an experiment depends on all robots concurrently operating
without faults and risks. In a multi-robot system, individual robots requiring
additional operator attention and overhead can thus pose a significant barrier
to rapid deployment and testing.

To the right of the plot, we observe a cluster of Ackermann drive robots
[36, 9, 37, 32, 4, 39, 1, 55]. These platforms move from top speeds ranging from
0.7m/s for the Minicar [36] (USD 76.5) to 8m/s for the AutoRally [55] (ca.
USD 10k), with an average of USD 4850. While some of these platforms are
agile, they tend to be expensive and not suitable for constrained indoor spaces.

Our solution sits at a frontier beyond which agility (speed) is attained only
by aerial platforms, and a lower cost is only attained by sacrificing agility. Fur-
thermore, as we will describe in later sections, our software stack supports a wide
range of relevant research problems, and has a proven track record throughout
six previous publications over the last three years [15, 12, 14, 30, 57, 16].

3 Technical Details

This section details the background and design decisions made when developing
our robot platform. We also cover all the supporting network, control and simu-
lation infrastructure that complement it, and thus enable rapid experimentation.
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3.1 Platform

We selected the DJI RoboMaster S1 as our platform’s base, leveraging its design
inspired by the RoboMaster competition—a DJI initiative to foster technological
exchange and innovation among regional universities [24]. The S1, an educational
robot, integrates a tank-like structure with a spring-dampened beam axle front
suspension and a four-wheel omnidirectional drive system, and is designed for in-
door use. It features a gimbal-mounted blaster toy gun and an onboard computer.
DJI specifies the base platform’s maximum speeds as 3.5m/s forward, 2.5m/s
backward, 2.8m/s laterally, and 600 deg/s rotationally, with a weight of 3.3 kg
(note that as part of our contribution, we side-step these manufacturer-imposed
restrictions). Each wheel has a diameter of 100mm, is powered by a brushless
motor with integrated gears and a driver and supports closed-loop speed control
up to 1000 RPM and a maximum torque of 0.25 Nm. This gives the platform a
theoretical maximum speed of (π · 0.1m · 1000RPM)/(60 s/M) = 5.23m/s. The
system is powered by a 25.91Wh smart battery, offering 2.4Ah capacity. [26].

The onboard computer interfaces with a sub-controller, managing all sensors
and wheels. We replaced the onboard computer, gimbal, and blaster gun with
a custom computing solution. We laser-cut components from acrylic to mount
our custom expansion in place of the turret. We provide a detailed overview of
the compute configurations in Fig. 3. All our design files are also part of our
open-source release. 2

3.2 Compute

The stock onboard compute module on the RoboMasters is impractical for run-
ning custom algorithms or implementing additional interfaces to cameras, sen-
sors, networks, etc. We therefore upgraded the onboard computer to a more
powerful and versatile single board computer (SBC), focusing on the NVidia
Jetson Orin family for its recency and lifecycle availability until January 20303.
While the Jetson Orin NX 16GB was selected for its robust processing capabili-
ties and suitability for our research, our design easily admits other cost-effective
single-board computers such as the Raspberry Pi. The Jetson Orin series ne-
cessitates a carrier board. Our choice, the AverMedia D131 carrier board, was
influenced by the availability of a CAN interface – essential for communicat-
ing with the RoboMaster sub-controller – and an optimal balance of interface
availability and cost. It accommodates two PCIe M.2 slots, where we installed
a 256 GB SSD and an Intel 9260 WiFi module. In an alternative Raspberry Pi
setup, we used the built-in ports and interfaces and added an additional CAN
shield for communication with the RoboMaster base. We provide a detailed bill
of material in Tab. 2.
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3.3 CAN Communication

DJI offers an API for the RoboMaster EP, the educational counterpart to the
RoboMaster S1, which enables control via a secondary computer (e.g., a Rasp-
berry Pi) through USB. However, this platform is not listed for sale on the
DJI store, is unavailable in many parts of the world (including the UK), and at
around USD 1500, is significantly costlier than the S1 model. The API, which DJI
has made open-source4, served as the foundation for our reverse engineering of
the communication protocol between the main computer and the sub-controller.
DJI employs a Controller Area Network (CAN) for hardware layer transport
but overlays it with a simplified serial package-based protocol. This design likely

2 https://github.com/proroklab/cambridge-robomaster
3 https://developer.nvidia.com/embedded/lifecycle, accessed 24/02/22
4 https://github.com/dji-sdk/RoboMaster-SDK, accessed 03/19/24

https://github.com/proroklab/cambridge-robomaster
https://developer.nvidia.com/embedded/lifecycle
https://github.com/dji-sdk/RoboMaster-SDK
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Table 2. We provide a cost breakdown for six different compute and sensing config-
urations for our platform at the time of paper writing. Optional equipment, such as
sensors, are put in parenthesis. All costs are stated in USD.

Item Raspberry Pi Orin Nano Orin NX

Robot Base: RoboMaster S1 549 549 549
Compute 55 255 670
Carrier: AverMedia D131 185 185
WiFi: Intel 9260 15 15
Mem: Micron MTFDKBA256TFK 65 65
Mem: SD Card 256 GB 30
Infrastructure: DC/DC Converter 20
Infrastructure: Waveshare CAN Hat 15
Infrastructure: Acrylics 10 10 10
Infrastructure: Mounting 10 10 10
Infrastructure: OLED Display (10) (10) (10)
WiFi: Netgear A6210 (50) (50) (50)
Sensing: Pi HQ Camera (50) (50) (50)
Sensing: Fisheye Lens (20) (20) (20)

Total Base 689 1089 1504
Total Optional (819) (1219) (1633)

addresses the limitations of CAN’s 8-byte data size per packet while facilitat-
ing multi-node network connectivity, leveraging CAN’s collision and arbitration
management capabilities. We outline the protocol’s structure in Fig. 4, noting
its use of a higher-level transport layer to specify node source and destination
IDs, sequence counters for package tracking, various command sets and IDs,
and acknowledgements, enabling subscription to specific package IDs for contin-
uous data stream over the network. We release our C++ implementation of the
messaging protocol as a stand-alone repository.5

3.4 Infrastructure

Here we describe components of our supporting infrastructure, each of which is
a product of over 4 years of refining and development. The high reliability of
these subsystems has been vital to our work in deploying multi-agent research.
We provide a high-level overview of the infrastructure in Fig. 5

Wireless Communication. Our system employs dual network interfaces
to facilitate distinct communication channels: a backbone infrastructure network
for all participating systems, and, an ad-hoc network exclusively for inter-robot
communication. For infrastructure-related communication, we utilize an Intel
9260 PCIe module for the Jetson and the integrated WiFi module for the Rasp-
berry Pi that connects to a central WiFi router (described below). This setup
integrates with broader infrastructure components, such as desktop systems op-
erating the Multi-Robot Manager UI, a motion capture system, and essential
hardware like an emergency stop button. This network also allows for SSH ac-
cess into the robots, file sharing, and centralized ROS messaging. In scenarios

5 https://github.com/proroklab/robomaster sdk can

https://github.com/proroklab/robomaster_sdk_can
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Fig. 5. We utilize two wireless networks, one for infrastructure (blue) and one for ad-
hoc peer-to-peer communication between agents. The infrastructure network is used
to communicate with fixed infrastructure. The multi-agent user interface to control
multiple agents efficiently is displayed in the top. The ad-hoc network is used for
experiments requiring decentralized communication.

requiring only centralized control, a desktop machine executes our entire con-
trol stack (Freyja, described later) for each robot, and transmits low-level wheel
commands to each robot via ROS2.

For direct robot-to-robot communication, we use Netgear A6210 USB3.0
modules to establish an adhoc multicast network. This configuration does not
rely on external infrastructure, enabling seamless peer-to-peer interactions.

Network. The deployment of an enterprise-grade router proved crucial for
centralized robot operation. We opted for a Mikrotik Router, selected for its
superior configurability and flexible antenna setup. We employ a structured IP
assignment strategy and bridge appropriate subnetworks that contain different
categories of devices (robots, computers, guest devices, etc).

Our router and ad-hoc setups typically operate at a broadcast channel ca-
pacity of 26Mb/s, and we typically observe around 1Mb/s network load when
operating 5 robots concurrently in a centralized mode (transmitting wheel ve-
locity commands to each robot at 50 Hz). For details on our Ad-hoc peer-to-peer
network, we refer the reader to [15] and [16].

Emergency Stop. Crash prevention is a priority in high-velocity multi-
robot experiments, and can be particularly complex to implement in a fully
decentralized framework. Inevitable system latencies in re-establishing SSH ses-
sions and the finite interval between terminating a control process and robot
immobilization necessitate a more reliable stop mechanism. Consequently, we
integrate an emergency stop service into our RoboMaster ROS driver, accessible
via the infrastructure network, that immediately halts velocity commands at the
lowest level. Additionally, we developed a stand-alone physical emergency stop
button, powered by a Raspberry Pi Zero, that connects to the infrastructure
network and features color LEDs to display the connectivity of the robots.
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On-Robot User Interface. Incorporating on-robot displays has proven ad-
vantageous, especially for operations outside the conventional laboratory setting
where an infrastructure network may be absent. These displays, compact and
economical at 128× 64 pixels, present vital statistics including CPU and mem-
ory usage, CPU temperature, network details (such as IP addresses and interface
connectivity), battery status, and the robot’s hostname. An integrated button
activates the emergency stop service if the robot is in motion. This feature is
particularly useful in field deployments, offering a direct control and monitoring
mechanism when network access is unavailable.

ROS2 Drivers We implemented a custom ROS2 Driver that accepts both
high-level velocity commands in the robot’s body frame as well as low-level wheel
speed commands. We use systemd to start these drivers automatically during
the system boot to make the experimental setup seamless.

Decentralized Deployment For deploying code across multiple robots, we
utilize the infrastructure network, employing rsync over SSH to synchronize up-
dates from a central workstation to each robot. We extensively leverage Docker
containers to remove experimental cross-interference among different users and
setups. This approach is particularly beneficial on the NVidia Jetson platform,
for which an extensive library of pre-configured containers is available. These
containers include environments for ROS, ROS2, PyTorch, and various other
learning frameworks, either standalone or in combination6. Docker is also con-
figured to manage local image repositories within the infrastructure network,
facilitating efficient image sharing among robots.

Multi-Robot User Interface We developed a configurable Python-based
User Interface (UI) operated from a workstation linked to the infrastructure
network. This UI facilitates connections to multiple nodes through SSH and
supports scripting through a configuration file. It is designed to automate the
parallel execution of repetitive commands that normally need to be executed in
different terminals on different devices, thus significantly reducing the manual
overhead associated with logging into individual robots, sourcing workspaces,
and running launch files, especially when identical commands are required on
multiple robots. A snapshot of the UI is shown in Fig. 5.

3.5 Sensors

Our platform is equipped with an array of exteroceptive and proprioceptive
sensors, supported by ROS2 drivers for seamless integration.

Proprioceptive The DJI RoboMaster features an onboard suite of sensors
including a 3D attitude sensor, wheel encoders, body velocity sensors, and bat-
tery level sensors, all accessible through the CAN interface.

Exteroceptive The D131 carrier board accommodates two camera CSI
inputs. We utilize this capability by attaching a Raspberry Pi HQ camera,
equipped with a fisheye lens, delivering a rectified image with a 120◦ field of view

6 https://github.com/dusty-nv/jetson-containers, accessed on 20/03/2024.

https://github.com/dusty-nv/jetson-containers
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(FOV) using OpenCV. Additionally, the RoboMaster is outfitted with physical
bumper sensors for enhanced interaction with its environment.

3.6 Control: Freyja

A necessary step in successful multi-robot deployments is the dependability of
individuals to track their target trajectories accurately. Towards this end, our on-
board control stack, Freyja [51], comprises of an optimal feedback controller and
a library of state filters developed entirely in C++ over the ROS2 middleware.
The model-based controller is a linear quadratic regulator (LQR) that regulates
the position and velocity of the robot along a trajectory by commanding wheel
speeds for the low-level driver. Denoting x ≡ [p⃗, v⃗]⊤ as the state variable (with p⃗
and v⃗ as the world-frame position and velocity vectors), we can write a dynamic
model for the system as ẋ = Ax+Bu, where A and B are system matrices, and
u is the applied control input. Then, for some reference state xref , it is possible
to design a matrix K for the control law, u = −K(x− xref) that stabilizes the
system to that (possibly time-varying) reference state.

3.7 Simulation: VMAS

Simulation is essential in multi-robot research as it enables safety and efficiency
in data collection for machine learning pipelines. State-of-the-art simulators em-
ploy GPU vectorization to massively parallelize this process [43], leveraging
the Single Instruction Multiple Data paradigm. Towards this end, we provide
a model for the RoboMaster platform in the Vectorized Multi-Agent Simulator
(VMAS) [10]. VMAS is a simulator consisting of a PyTorch differentiable physics
engine and a set of challenging multi-robot tasks. Thanks to this, it is possible
to rapidly train and deploy multi-robot policies from the simulator to the real
world in a zero-shot manner, as demonstrated in previous work [12] (video here).

To enable this deployment pipeline, we integrated several new features into
the simulator. Firstly, to generate the v⃗ref input required by Freyja, we imple-
ment a PID controller layer that regulates the input forces required by VMAS
based on these reference velocities. This layer allows us to train neural network
policies that output desired velocities v⃗ref and directly use them on our physical
platform, without any change. Secondly, a key to the real-world deployment was
an iterative fine-tuning process for some of the physics parameters in VMAS.
These are parameters that depend on the robot platform and its interaction
with the environment, such as friction coefficients, drag, control ranges, state
boundaries, and robot geometry. This tuning process can be done once for each
robot-environment pair and can be then utilized for any subsequent deployments.

A model for the RoboMaster platform in VMAS enables applications beyond
prototyping in simulation and deploying in the real world. For instance, thanks to
the accelerated computing available on our platform, policies trained in VMAS
on approximated representations of the environment can be fine-tuned on the
robot using data collected in the real world.

https://youtu.be/1tOIMgJf_VQ?si=iuIHak4syX4hNhaO&t=549
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Fig. 6. We demonstrate the efficiency of our platform combined with the Freyja con-
troller suite in two single-agent trajectory tracking experiments, in a straight line tra-
jectory (top) and a circular trajectory (bottom). We report the reference position and
velocity (orange) and measured position and velocity (blue) as well as the tracking
error dp over time. The position error increases and decreases since the reference ac-
celeration is set to a higher value than the platform’s physical limit.

4 Evaluations

We now demonstrate the characteristics of our platform and the supporting suite
of software framework through a wide range of experiments. These explore the
versatile and diverse nature of studies that this platform enables, such as,
– running classical model-based control (Freyja) for agile trajectory tracking,
– zero-shot sim-to-real transfer of multi-agent navigation tasks learnt in VMAS,
– running distributed visual SLAM onboard to track relative position and thus

avoid collisions, and,
– utilizing large neural networks based on the DinoV2-s architecture to esti-

mate relative poses and then track trajectories.
Finally, we summarize prior work from our research group that utilizes this plat-
form for real-world deployments of multi-robot systems research.

Classical Trajectory Tracking. We first demonstrate the agility of our plat-
form in a single-robot experiment in which we benchmark the tracking perfor-
mance of Freyja as well as the velocity of our robot platform at high speeds. We
demonstrate this on a straight line trajectory and a circle trajectory in Fig. 6.
The straight line trajectory has a length of ca. 5m, and the circle trajectory has
a diameter of 1.5m. We show that the robot reaches a top velocity of 4.45m/s,
thus exceeding the maximum rated speed of the DJI RoboMaster platform by
1.15m/s, and accelerations of up to 5m/s2 in the straight line trajectory with a
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Fig. 7. We showcase our sim-to-real capabilities on a MARL position swapping policy
trained entirely in VMAS [10]. Eight agents (color-coded) start on opposite sides of
a 4 m × 2 m rectangle and attempt to swap positions with agents on the respective
other side, which leads to multiple conflicts. The lines indicate their trajectories up to
a particular time point, and the circles indicate their corresponding goals. We show
snapshots from the real-world setup at the bottom.

maximum error of 0.5m, and maintains a velocity of 1.7m/s on the circle tra-
jectory with an average error of 0.1m. In the line trajectory, we are constrained
by the size of the laboratory, which prohibits the robots from going faster. The
platform is capable of at least 600 deg/s in angular velocity, however, being a
holonomic system, we do not stress this any further.

Sim-to-real Multi-Agent Navigation. We now demonstrate zero-shot de-
ployment of MARL policies for a multi-robot navigation task trained in VMAS [10]
using the BenchMARL library [11] and TorchRL [17], following the pipeline
described in Sec. 3.7. Agents are rewarded for navigating to their goal while
avoiding collisions with each other, to do so they use the GPPO model ([12]),
which leverages a Graph Neural Network (GNN) in the policy for inter-agent
communication. The GNN utilizes a 5-layer MLP with a total of 2300 trainable
parameters, which can be evaluated on the Jetson Orin NX in 0.5ms. The re-
sults, reported in Fig. 7, show that eight agents are able to seamlessly execute
the learned policy collision-free in the previously unseen real-world environment.

Distributed Visual SLAM. In this demonstration, we showcase the system’s
ability to run a decentralized visual SLAM system locally onboard using the
optionally attached Raspberry Pi HQ cameras. Our collaborative SLAM system
enables the agents to share a unified map of the world, thus facilitating relative
positioning even when their views do not overlap, and even when the other agent
is not explicitly detected in view. To validate the quality of this shared map, we
use a nonlinear model predictive controller to avoid collisions with both peers
and static obstacles. Fig. 8 tests a collision avoidance scenario at an intersection,
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Fig. 8. We demonstrate multi-agent collision avoidance, facilitated by a distributed
visual SLAM system running locally on the robots. Two robots are set 90° to each
other in an intersection environment (right). The agent travelling along the E axis
is given a goal pose on the other side of the intersection, and successfully avoids a
collision when the agent travelling along the N axis is pushed through the intersection.
The trajectories generated by the SLAM system are presented on the left chart.

where two robots (travelling along the horizontal and vertical axes) would nom-
inally collide at the intersection. However, they are able to localize each other
close to the origin when common features are available in the environment, and
the robot travelling along the vertical axis is able to slow down to avoid colliding.
We are including additional details of this setup in a follow-up work.

Multi-robot control using CoViS-Net. In this experiment, we deploy CoViS-
Net [16], a pre-trained neural network to estimate relative poses between two
camera frames, on two different robots. The camera images of two robots are
encoded, and the features are broadcasted over the ad-hoc network to other
robots within the communication range, based on which the relative pose can be
predicted, which is then used to track a trajectory using Freyja. In this setup,
we use two robots, one that serves as origin for the reference coordinate frame of
the other robot, which is commanded to move along a shifted circle trajectory.
The result, visualized in Fig. 9, shows that we are able to move with a velocity of
about 1m/s on the circle, with an average estimated error of 0.25m. Our model
uses the DinoV2-s base neural network with 21M parameters, which we are able
to run in 20ms on the Jetson Orin NX after optimising with NVidia TensorRT.

Case Studies. Our system has reached this level of maturity over the course of
several iterations of research and development in the last four years. Apart from
the capabilities demonstrated above, this framework has featured as a primary
research platform in several prior multi-agent works from our group:
– Multi-agent passage scenario, where five RoboMasters navigate through a

narrow passage, coordinated by onboard decentralized homogeneous GNN [15];
– Real-world HetGPPO, where heterogeneous GNNs trained in VMAS de-

ployed on RoboMasters demonstrate superior resilience to real-world noise [12];
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Fig. 9. The decentralized trajectory tracking tracks a reference trajectory relative to a
stationary robot (red dot), based on the relative poses estimated by a CoViS-Net [16].
We run this neural network on board, in real-time. The position error and velocity are
estimated from the predicted poses.

– Visual Navigation, where a RoboMaster navigates an environment guided
entirely using visual sensors and a policy trained in simulations [14];

– CBFs for multi-agent control, where four RoboMasters use a control barrier
function based GNN strategy to navigate [30]; and,

– Single-agent search & navigation, where LQR, CBF and RRT* are combined
for safe and optimal single-robot motion planning [57].

– Deployment of multi-agent foundation models, where up to four RoboMaster
estimate the relative pose to perform decentralized formation control in real-
world scenarios [16].

5 Conclusion

This article introduces a versatile omnidirectional ground robot system that is
based on extensive modification and enhancement of the original DJI RoboMas-
ter S1 platform. We significantly extend the capabilities of the base platform by
providing multiple options for more flexible and powerful compute solutions, on-
board sensors, model-based control, and sim-to-real capabilities for distributed
RL policies. After an intensive research and development pipeline over four years,
our full platform (hardware and software) now serves as a highly reliable testbed
well-suited for a wide range of experiments. We showcase its capabilities through
four new evaluations with fleet sizes of up to eight robots, and refer to six case
studies from prior work that point to its proven track record.
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