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Transport network design for vehicle

routing: results on path addition and

capacity reduction

Abstract

Autonomous Vehicles (AVs) are becoming increasingly popular thanks to advancements

in Artificial Intelligence algorithms that enable self-driving. This technological shift

will lead to a drastic change in our current mobility paradigms. Historic trends suggest

that this change will heavily impact the transportation infrastructure. While a lot

of works focus on control and routing of AVs, little attention is being paid to the

transportation network. In this thesis, we investigate the problem of optimising the

transportation network for AVs both from a theoretical and from a practical perspective.

In the first part, we investigate the properties of adding paths to a network and prove

that the intuitive statement adding a path to a transport network always grants greater

or equal benefit to users than adding it to a bigger network is false. In other words,

we prove that path additions to transport networks, where AVs are routed, are not

supermodular in travel time, extending the seminal result of Braess’ paradox. We provide

counterexamples to support our proofs. We further provide some formulations where,

instead, we are able to prove the supermodularity of path additions. In the second

part, we formulate two network design problems for self-interested AVs. We present the

problem of optimising transport networks via path additions and a novel problem design

where self-interested users are guided towards optimal paths through the reduction of

road capacities. This formulation, unlike previous network design research, allows users to

see non-optimal roads as more costly by bridging a road pricing policy with environment

shaping. To solve the capacity reduction problem, we implement a genetic algorithm as

well as a reinforcement learning task using a designer agent trained with proximal policy

optimisation and a graph neural network architecture. We simulate our solutions in the

microscopic traffic simulator SUMO and in a custom built macroscopic traffic simulator.

Through capacity reductions, we achieve significant total travel time improvements on

six real-world transport networks: Anaheim (USA), Barcelona (Spain), Chicago (USA),

Eastern Massachusetts (USA), Sioux Falls (USA), and Winnipeg (Canada). For instance,

we improve the Chicago network by up to 7%, saving more than 487 hours of total travel

time per traffic hour. This is done strictly through virtual capacity reductions, without

the need for physical or infrastructural modifications to the network. This makes our

solutions ready for immediate deployment on any transport network in the world.
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Chapter 1

Introduction

Autonomous Vehicles (AVs) are attracting increasing attention thanks to their revolu-

tionary potential to improve current mobility paradigms. Recent progress in the design

of electric engines and of artificial intelligence algorithms deployed on board of AVs is

contributing to accelerate this mobility shift. As these vehicles will require no human

input, we are preparing to a transition in which human control will make room for

cooperation among AVs.

As we can observe from historic trends, every change to our mobility systems has

been followed by a change to the transportation network infrastructure. In this work,

we want to anticipate this trend by investigating the impact that the transportation

network infrastructure has on AVs’ routing. In particular, drawing from the insights

of the famous Braess’ paradox [1], we tackle the problem of designing transportation

networks for AVs from a range of different theoretical and practical perspectives.

Unlike past network design research, which focuses on adding physical infrastructure

to transport networks under a construction budget, we focus on pushing the single

AV’s interest towards the system optimum just by shaping the current network and by

removing infrastructure.

In the first part of this project, we tackle the problem of AVs routing from a general

theoretical perspective. We model AVs as flow traversing a transport network represented

as a graph. We prove that the intuitive statement adding a path to a transport network

always grants greater or equal benefit to users than adding it to a bigger network is false.

In other words, we prove that path additions to transport networks where AVs are routed,

are not supermodular in travel time. This is valid both when vehicles are routed according

to their own interest and when they are routed according to the system’s optimum.

This result extends Braess’ paradox, which proved the non-monotonicity of the same

problem for self-interested users. As in Braess’ work [1], we provide counterexamples

to support our proofs. This result is proven both for congestion-aware AVs and for

congestion-agnostic AVs (traditional min-cost flow problems). We furtherly provide and

prove some scenarios where, instead, the property of supermodularity holds. The results

of this theoretical investigation are something that every network designer should be

aware of, as they provide important proofs that an intuitive property of path additions

is indeed false.

In the second part of this project, we formalise two network design tasks as bilevel
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optimisation problems. In these problems, the network designer can modify the transport

network topology and observe how AVs redistribute in the new network. For the first

task, we start from a spanning tree transport network and try to optimally add paths

to it. For the second task, we start with a network topology (e.g. a city), where we

believe that Braess’ paradox occurs, and we seek to reduce the edge capacities in order

to make the selfish AVs behave optimally (minimise the total system travel time). Our

capacity reduction is similar to a road pricing scheme, in the sense that we show some

roads to users as more costly than they really are, but costs are not fictitious, as they

are always mapped to edge capacities, which are real topology parameters. To solve the

first problem, we implement a greedy algorithm, while, for the second, we implement a

Genetic Algorithm (GA) as well as a Reinforcement Learning (RL) task using a designer

agent trained with Proximal Policy Optimisation (PPO) and a Graph Neural Network

(GNN) architecture. We simulate our solutions in the microscopic traffic simulator

SUMO [2] and in a custom built macroscopic simulator. To solve the routing problem, we

reproduce self-aware routing [3] and also implement the Frank-Wolfe traffic assignment

algorithm [4]. The macroscopic simulator and the traffic assignment solver have been

published as standalone products and are already being used by other researchers. In this

simulator, we test our capacity reduction algorithms on six real-world transport networks:

Anaheim (USA), Barcelona (Spain), Chicago (USA), Eastern Massachusetts (USA),

Sioux Falls (USA), and Winnipeg (Canada). Our results show significant improvements

in total travel time on all networks, with hundreds of travel hours saved while maintaining

fairness to the users at the routing level.

The network design formulation we provide is innovative and could help traffic control

organisations, such as governments, optimise AVs’ traffic throughput. In a scenario

where different AVs’ producers deploy self-interested vehicles, our capacity reduction

network design framework could be implemented by the central organisation to push AVs

to behave optimally, while maintaining fairness to the single users. Our solutions are

ready for immediate deployment on any transport network in the world. Furthermore,

all of our insights can be applied to any network flow model. One example is crowd

control [5], which has become increasingly relevant after the COVID-19 pandemic.

The dissertation is organised as follows: Chapter 2 introduces some background

concepts, Chapter 3 analyses the relevant related work, Chapter 4 discusses the super-

modularity of path additions, Chapter 5 introduces our network design tasks, Chapter 6

contains the evaluation of the proposed solutions, and, lastly, Chapter 7 concludes this

dissertation.
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Chapter 2

Background

In this chapter, we illustrate the main background concepts underlying the development

of this project. The foundation of this work stems from the field of traffic research and, in

particular, traffic assignment. We draw from seminal contributions such as the Wardrop

equilibrium [6] and the Braess’ paradox [1] to develop our theoretical results. We apply

these concepts to real-world problems formulated as optimisation tasks. To tackle such

problems, we employ traditional techniques from the field of operations research and

evolutionary computation as well as innovative approaches through the use of graph

neural networks and reinforcement learning.

2.1 Transportation networks

The environment in which vehicles are routed can be described as a transportation

network (also known as transport network). A transport network is a realisation of

a spatial network, characterising a structure which permits agent movement. Some

examples are: road networks, railway networks and air routes. In such networks the

congestion level is defined as the user load on a specific segment. Transport networks can

be formally modeled as graphs whose nodes represent intersections and edges represent

paths connecting them (e.g., roads). Different properties can be assigned to nodes and

edges. In this work, we associate to each edge a cost function representing the travel

time required to traverse that edge, which is dependent on its current congestion. We

also consider edge capacities, which represent the maximum congestion level suitable for

a specific edge.

The main scenarios described in this project consider road networks where autonomous

cars are routed. However, the flow problem formulation that we use does not bind our

results to this agent type and transport infrastructure. In fact, our insights could be

applied to any transportation network structuring problem. One example is describing

and controlling crowd movements as flow distributing in pedestrian transport network [5],

a problem that has seen increasing attention during the COVID-19 pandemic.
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2.2 Traffic and congestion

2.2.1 System optimal and user equilibrium routing

Traffic can be modeled as flow in a transport network, represented as a graph. Under

this formulation, user trips are defined as origin-destination (OD) pairs in the network

with an associated demand that represents the amount of vehicles per time unit that

take part in the trip. A cost is associated with each edge to represent the travel time

required to transverse it.

When such cost is modeled as a constant, the routing problem reduces to the Minimum-

Cost Multi-Commodity Flow (MCMC) problem [7]. If fractional flows are allowed, this

problem becomes a linear program and can be solved with traditional linear programming

techniques.

On the other hand, to model the effect of congestion, the edge cost functions should

be dependent on the current flow. In this work, we consider two popular flow-dependant

cost functions:

• The Bureau of Public Roads (BPR) cost function [8]

• Greenshields’ cost function [9, 10]

These two function will be analysed in detail in Section 4.2.1.

The introduction of flow-dependant costs gives rise to two different formulations

for the routing problem [11]. The first is called System Optimal (SO) routing. It

characterises the scenario where all users choose their paths in order to minimise the

total system travel time or, in other worlds, the social cost. The second is known as

the User Equilibrium (UE) or Wardrop equilibrium, from the seminal work in which

Wardrop first introduced it [6]. The UE represents a scenario were routing is modeled

as a non-cooperative game and users choose their paths greedily, converging to a Nash

equilibrium. In this state, no user can improve its travel time by choosing a different

path to its destination. UE routing is thus a self-interested routing formulation, in which

every user chooses the most convenient road for himself. In this work, we use the terms

self-interested or selfish routing and UE routing interchangeably.

SO routing is not fair to the users, as some user may be disadvantaged for the

system’s greater good. On the other hand, UE presents a fair solution in which every

user going to the same destination experiences the same travel time, but it comes at the

cost of system non-optimality. The cost trade-off in total travel time between these two

scenarios is known as “The price of anarchy” [12, 13]. Both routing strategies can be

casted as convex nonlinear optimisation problems, which can be solved by traditional

gradient-based techniques such as the Frank-Wolfe algorithm [14, 4]. More on this in

Section 5.1.2.

Given the unfairness resulting from SO, most of traffic assignment research has

focused on UE routing. Apart from solving the optimisation problem, solutions have

been proposed to compute UE paths that consider traffic at the microscopic vehicle

level. A first solution computes the dynamic UE through iterative microscopic traffic

simulations [15]. A second approach performs iterative traffic assignment by routing

4



vehicles online according to a global congestion view [3]. In this project, we use both of

these works to solve UE routing in our simulations.

Example scenario

Let us consider the example shown in Figure 2.1 to illustrate the difference between SO

and UE routing. In this simple scenario we consider only one trip, from s to t, with a

demand of 1 unit of flow. In the network there are only two roads, represented as edges.

The travel time of such roads is indicated by c1(x) and c2(x), which are functions of the

flow x. The flow routed on the upper road is indicated as x1, while the flow on the lower

road is x2.

s t

c1(x) = 1

c2(x) = x

Figure 2.1: Simple transport network to illustrate the difference between UE and SO. It
presents one origin s and one destination t and a flow demand of 1 that has to be distributed
along paths 1 and 2, with travel time costs respectively c1(x) and c2(x).

If the users are routed according to UE, the flow will distribute such that all the

users experience the same travel time. This leads to a UE where all the flow is routed on

the lower road (x1 = 0, x2 = 1), yielding c1(x1) = c2(x2) = 1. The total system travel

time is x1c1(x1) + x2c2(x2) = 1. On the other hand, if we optimise for the SO, the flow

distributes equally on the two roads (x1 = 0.5, x2 = 0.5), yielding a total travel time of

x1c1(x1) + x2c2(x2) = 0.75. This example is summarised in Table 2.1.

Table 2.1: UE and SO routing results on the simple network in Fig. 2.1.

Routing x1 x2 Total travel time

User Equilibrium 0 1 1

System Optimal 0.5 0.5 0.75

2.2.2 Braess’ paradox

One of the most popular results in traffic research is a routing paradox discovered by

Braess [1] in 1968, which has since become known as the Braess’ paradox. Braess’ paradox

states that, when users are routed according to UE, the total system travel time can

increase after a new road is added to the network. We can see how this phenomenon is

not really a paradox as, when users are behaving according to UE, they behave selfishly

and thus probably do not make the best use of the transportation infrastructure available.

Braess illustrates this through a simple yet somewhat pathological example. However,

Braess’ paradox has been shown to be commonplace in road networks [16, 17] and in

large random networks [18].

In the following, we illustrate Braess’ example.
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Figure 2.2: Braess’ paradox network. Labels on the edges represent the flow-dependant travel
time functions.

Braess’ paradox presents a proof that the total travel time of users routed in a network

according to the UE is not monotonic non-increasing with respect to path additions.

This is shown through a counterexample, reported in Figure 2.2. In this example, we

consider a flow demand of 6 going from node s to node t. The road travel time cost

functions are reported on the respective edges of the graph. In Figure 2.2a the solution to

the SO and UE is simple: all the users spread equally on the available paths, leading to

a flow of 3 on the top edges and a flow of 3 on the bottom edges. Every user experiences

the same travel time of 50 + 3 + 10 ∗ 3 = 83. This solution is both optimal for the users

and for the system. On the other hand, if the edge (v, w) is added to the network, as

in Figure 2.2b, the solution to the SO does not change, while selfish users behaving

according to the UE see an opportunity to decrease their travel time by using the newly

created path (s, v)→ (v, w)→ (w, t). Thus, when the equilibrium is reached we observe

a flow of 2 in the previously available paths and a flow of 2 in the newly created one. In

this UE scenario each user experiences the same travel time of 92. The increase in the

total travel time of users behaving accordingly to UE after the addition of edge (v, w) is:

92 ∗ 6− 83 ∗ 6 = 552− 498 = 54

Braess’ paradox informs us that extreme cation must be used when structuring

transport networks. More precisely, two main insights can be derived. Firstly, particular

attention has to be paid when considering adding new paths to road network, as it is

possible that such additions may not only have no effect, but also damage the current

efficiency of the network. Secondly, it tells us that, given a network, optimal solutions

for the UE could be found by considering its subnetworks, that is, removing some edges

could lead to great user benefits. These two insights respectively motivated the two main

contributions of this project.

2.2.3 Traffic simulation

We also employ traffic simulations to validate our results. Traffic simulation models can

be divided into three main categories [19]:

• Macroscopic traffic modeling [20], where traffic is simulated at a system level

with traffic density represented as continuous flows in the road network.

6



• Microscopic traffic modeling [21] simulates traffic at a vehicle level. Each

single vehicle can have different characteristics and parameters. This allows for

detailed analyses on the interaction between different types of vehicles.

• Mesoscopic traffic modeling [22] bridges the two approaches by providing a

trade-off between simulation complexity and level of detail.

In this work we will look into both microscopic traffic simulation and macroscopic

flow simulation. After reviewing the available state of the microscopic traffic simulators

[23, 24, 2] as well as literature surveys on the topic [25], we chose to use SUMO [2]. For

the macroscopic flow simulation, we develop custom code.

SUMO

SUMO (Simulation Of Urban Mobility) [2] is a free and open-source traffic microsimulator.

It provides interactive graphical tools for visualising simulations and creating road

networks. Real-world networks can be imported from Open Street Map [26]. SUMO

allows intermodal traffic by modelling pedestrians, public transport and cyclists.

2.3 Supermodularity

A fundamental component underlying the theoretical study in this dissertation is the

property of supermodularity of set functions [27]. Before introducing such property, let

us first define non-increasing monotonicity.

Definition 2.3.1 (Monotonic non-increasing set function). Let Λ be a set function

defined as Λ : 2G 7→ R, where 2G is the power set of the finite set G. Λ is a monotonic

non-increasing function of G if and only if for every A and B such that A ⊆ B ⊆ G, we

have that Λ(B) 6 Λ(A).

In other words, if Λ is monotonic non-increasing, its output cannot increase when

new elements are added to its current input. Let us now introduce supermodularity.

Definition 2.3.2. (Supermodular set function) Let Λ be a set function defined as

Λ : 2G 7→ R, where 2G is the power set of the finite set G. Λ is a supermodular function

of G if and only if for every A and B such that A ⊆ B ⊆ G and every x ∈ G \ B, we have

that

Λ(A)− Λ(A ∪ {x}) > Λ(B)− Λ(B ∪ {x})

In other words, if Λ is supermodular and it represents some notion of cost, the utility

of adding an element to its current input is always greater or equal than the utility of

adding the same element to a superset of its current input.

It is fundamental to understand that none of these two properties implies the other.

Therefore, a supermodular function can be non-monotonic.

2.4 Genetic algorithm

Metaheuristics are general algorithms designed to solve complex optimisation problems

in a computational and time efficient manner. Unlike exact methods, they often do not
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converge to exact solutions. However, exact solutions may be computationally infeasible

to calculate and the trade-off between computational complexity and exactness is a

fundamental factor to consider. The high level structure of metaheuristics enables them

to be applied to a variety of optimisation problems.

Genetic algorithm (GA) [28] is a popular metaheuristic that belongs to the field of

evolutionary computation [29], a class of optimisation algorithms inspired from biological

evolution. It is, in fact, based on the Darwinian evolutionary theory, implementing the

concept of “Survival of the fittest”.

0. Initial Population
Initialise the population

1. Selection
Evaluate the fittest

2. Crossover
Reproduction of the fittest

3. Mutation
Mutate genes in the new population

Figure 2.3: High level structure of the Genetic algorithm.

The general structure of this class of algorithms is depicted in Figure 2.3. It is divided

in four main steps:

0) Initial population: In this phase a set of feasible solutions to the optimisation

problem is created. Each solution in the population is composed by a set of

attributes, called genes.

1) Selection: In this phase the fitness of each solution is computed according to a

problem-dependent fitness function.

2) Crossover: Reproduction is carried out among the fittest individuals according

to a given probability. The new generation is obtained by mixing the gene set of

pairs of individuals.

3) Mutation: With a defined probability, each gene of each individual is subject to a

modification called mutation. This introduces diversity in the current population.

This process continues until a certain stopping condition is met. The most important

problem-dependant components that a user has to specify are: the fitness function, the

crossover strategy, and the mutation function. By relying on probabilistic transition
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rules, the GA is able in general to achieve better search space exploration with respect

to traditional deterministic metaheuristics.

2.5 Reinforcement learning

Machine learning paradigms have seen an increasing popularity in recent years. Unlike

traditional supervised learning settings, Reinforcement Learning (RL) [30] considers an

agent autonomously interacting with the environment.

At each time step t, the autonomous agent observes a state st ∈ S that contains a

representation of the environment. It then chooses an action at ∈ A based on the state

observed. This action leads to the agent observing a new state st+1 ∈ S and receiving a

reward rt+1 ∈ R, that encodes the goodness of its action. This interaction is illustrated

in Figure 2.4.

Action
!"

State
#"

Reward
$"

Agent Environment

$"%& #"%&

Figure 2.4: Reinforcement learning agent-environment interaction.

The sequential decision making task just described can be formulated as a Markov

Decision Process (MDP). A MDP is a tuple 〈S,A,R, T , γ〉, where S,A are the state

and action spaces, R is a reward function R : S,A 7→ R, T contains the state transition

probabilities T (st+1|st, at) and γ is a reward discount factor where lower values place

more emphasis on immediate rewards. A MDP is based on the Markov assumption,

which informally states that “The future is independent from the past given the present”.

Therefore, in MDPs, the current state captures all the information from the agent

interaction history.

The ultimate goal of the agent is to learn a policy π in order to maximise the total

discounted reward. π is defined as an action distribution over the states π(a|s) = P (a|s).
The total discounted reward vt, also called return, is defined as:

vt = rt+1 + γrt+2 + · · · =
T∑
k=0

γkrt+k+1
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Where T is the agent-environment interaction length, known as episode length. T

can be infinite in the case of infinite length episodes.

Given a policy π it is possible to define the utility of each state. This is done using

the state-value function:

V π(s) = Eπ[vt|st = s] = Eπ

[
T∑
k=0

γkrt+k+1

∣∣∣∣∣st = s

]
Which estimates the expected total discounted reward obtained if the agent starts in

state s and follows policy π. We can also define the value of each action in each state

through the action-value function:

Qπ(s, a) = Eπ[vt|st = s, at = a] = Eπ

[
T∑
k=0

γkrt+k+1

∣∣∣∣∣st = s, at = a

]
The best possible agent performance in the MDP is then obtained by maximising

these functions.

V ∗(s) = max
π

V π(s)

Q∗(s, a) = max
π

Qπ(s, a)

V ∗(s) and Q∗(s, a) are the state-value function and the action-value function cor-

responding to the optimal policy π∗. Note that all optimal policies obtain these value

functions and there always exists a deterministic optimal policy for any MDP.

Many iterative methods have been proposed for finding the optimal policy. While

methods like dynamic and linear programming can reach the optimum in simple sce-

narios, they become infeasible for complex MDPs. RL approaches like Monte Carlo

methods, Temporal Difference learning, Q-learning and SARSA have been used in the

RL literature. Recently, Deep Neural Networks (DNN) have been shown to be provide

effective solutions [31].

Proximal policy optimisation

In this work we use Proximal Policy Optimisation (PPO) [32], a deep RL [33] algorithm

for finding the optimal policy.

PPO aims to compute a stochastic parametric policy πθ by employing two neural

networks: the actor and the critic. The critic tries to approximate the state-value

function for each state and the actor encodes the policy πθ. The policy is updated

through gradient descent based on a loss obtained by comparing these two components.

The algorithm is model-free meaning that it learns the MDP model dynamics through

agent-environment interactions. The innovative aspect of PPO with respect to other

policy gradient methods is that it avoids large policy updates by simply clipping the

loss.
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Chapter 3

Related work

With the introduction of Autonomous Vehicles (AVs) we are facing a societal shift

towards new mobility systems based on driverless vehicle control. These technologies are

enabling new paradigms such as Autonomous Mobility-On-Demand [34]. The modeling of

vehicles as flow in a capacitated network has been recently studied in these systems [35].

A key component that has to be taken into consideration is the environment and its

impact on AVs navigation [36]. A line of research focuses on the co-design of mobility

systems [37]. Recent work in multi-robot task assignment [38] has shown interesting

correlation patterns between the assignment procedure and the diversity in the paths

chosen by the robots traversing the transport network. Given the high potential and

impact that environment optimisation can have on these robotics systems, in this work

we aim to gain general insights and results on the problem by aligning with related work

in traffic research.

The discovery of Braess’ paradox [1] advised researchers that extra care had to be

put in designing transport networks. Seminal works have analysed the trade-off between

User Equilibrium (UE) and System Optimal (SO) routing [11]. The impact of network

topology [13] and the impact of centrally controlled users [39] on routing have been

investigated as well. These works led to a hardness result regarding the problem of

designing networks for selfish users [40], exacerbating the severity of Braess’ paradox. For

this reason, several works investigated how Braess’ paradox could be detected and avoided:

[41] focuses on the hard problem of identifying optimal “Braess-free” sub-networks, [42]

analyses the range of trip demands that do not cause the paradox, [43] proposes an

heuristic solution to identify the road segments causing traffic delays.

Another approach, close to ours, to incentivise selfish users to make optimal use of

the transport network, is the introduction of road pricing policies, implemented through

road tolls [44]. This strategy implements an economic model of route guidance where

users are penalised economically proportionally to the non-optimality of their behaviour.

[45] analyses the benefit of such pricing policies in networks with linear latency functions

and reaches the conclusion that taxes in such networks are at most as effective as edge

removals.

The central problem in traffic research that focuses on network design is known as

the Network Design Problem (NDP). It is formulated as a bilevel optimisation task.

At the higher level, the network designer can make decisions that impact the network
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infrastructure, these decisions can be discrete (adding and removing edges) or continuous

(extending the edge capacities). Decisions involve physical network modifications and are

subject to a budget. At the lower level, users see the network modifications and route

according to the UE on the modified network. Note that the designer cannot control

directly the users’ behaviour, but only influence it through environment optimisation.

This kind of setting is also known as a Stackelberg game [46]. The designer goal is to

minimise the total system travel time while respecting the construction budget. In other

words, make the best use of infrastructure improvements in order to make selfish users

indirectly behave optimally. Our task is extremely related to this, but we do not consider

extending the current infrastructure, instead we leverage insights from Braess’ paradox

to make some links look less appetible to selfish users, not through a pricing scheme, but

through a modified view of the network in which the capacity of some links has been

decreased.

For a comprehensive review of the NDP, see [47]. The discrete formulation of the

problem was first introduced by LeBlanc in 1975 [48], where he solves this NP-Hard

problem by utilising the branch and bound algorithm and a clever SO relaxation for the

lower bounds. This is a computationally infeasible solution for large networks and, thus,

heuristic approaches have been proposed [49, 50]. The Genetic Algorithm (GA) represents

one effective metaheuristic solution [51]. The continuous version of the problem was

introduced in [52] and still constitutes an hard optimisation task due to the non-convexity

deriving from the bilevel formulation. Also in this case, metaheuristics such as simulated

annealing [53] and GA [54, 55] have shown to perform nearly optimal.
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Chapter 4

Supermodularity of path

additions

In this chapter, we analyse the impact of the addition of paths to a transport network

where Autonomous Vehicles (AVs) are routed. We tackle this problem from a theoretical

perspective, in order to investigate the formal properties of the utility gained from

extending the transport network. We prove that the intuitive statement adding a path to

a road network always grants greater or equal benefit to road users than adding it to a

bigger network1 is false.

In the first part of this chapter (Sec. 4.1), we model the problem of routing AVs in

congested networks as a classical minimum cost multi-commodity network flow problem [7].

We then move to defining the concepts of trip spanning tree and path addition which will

allow us to formalise how we extend the transport network. Then, we focus on the routing

objective function and, in particular, on the effects that extending the input graph has

on the routing cost. We show that the rather intuitive property of supermodularity of

path additions to transport networks does not hold in the general multi-commodity case.

We also prove that, in the more specific case of parallel paths with arbitrary costs and

fixed capacities, we obtain diminishing returns upon the addition of new paths.

In the second part (Sec. 4.2), we introduce the problem of time delays due to

congestion by extending the multi-commodity network flow problem to the case of

flow-dependant costs. We show that also in this case, for both System Optimal (SO) and

User Equilibrium (UE) routing, the rather intuitive property of supermodularity of path

additions to transport networks does not hold. We then analyse the impact of network

extension in a specific routing scenario where we prove that path additions produce a

supermodular improvement in routing.

The chapter is structured in the following way: Section 4.1.1 introduces the minimum

cost network flow problem and explains how such problem is extended for multiple AVs

trips, Section 4.1.2 defines how we model the initial transport network and its extensions,

Section 4.1.3 investigates the supermodularity of path additions in congestion-agnostic

routing, Section 4.2.1 introduces the notion of flow-dependant costs, Section 4.2.2 and

4.2.3 characterise the SO and UE problems, Section 4.2.4 analyses the differences between

1A superset of the original network
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these two problems, in Section 4.2.5 we investigate the impact that network extensions

have on routing performance in this scenario, Section 4.2.6 proves the supermodularity

of path additions for identical parallel paths and, finally, Section 4.3 summarises the

chapter.

4.1 Congestion-agnostic routing

4.1.1 Minimum cost network flow problem

The minimum cost network flow problem (MC) is a classic flow problem [7]. It is

concerned with capacitated networks in which a cost is associated to every edge. Given

a source node s, a sink node t, and a flow demand d, we are interested in finding the

optimal flow distribution in the capacitated network such that the total cost is minimised.

The shortest path problem and the maximum flow problem are special cases of the MC

problem. In this work, we treat the flow source and sink as origin and destination of a

AVs trip, where the demand represents the number of vehicles per time unit going from

that origin to that destination.

Given an oriented graph G = (V, E), where V denotes the node set and E ⊆ V × V
denotes the edge set, we associate to each node a demand di ∈ R,∀i ∈ V and to each edge

a unitary cost cij ∈ R and a capacity uij ∈ R, ∀(i, j) ∈ E . Note that, in this formulation,

we allow cij 6= cji. We define a trip as a triple (s, t, d), where s ∈ V is the origin node,

t ∈ V is the destination node and d is the vehicle demand. We set the network demands

di as indicated by Equation 4.1.

∀i ∈ V di =


−d if i = s

d if i = t

0 otherwise

(4.1)

We observe that the total demand of the network is equal to zero
∑
i∈V di = 0.

We denote the vehicle flow routed on an edge as xij ,∀(i, j) ∈ E . The routing problem

consists in determining the optimal vehicle distribution on the network edges in order

to route all the demand d from s to t while minimising the total cost. The problem is

formalised as follows

min
x

∑
(i,j)∈E

cijxij (4.2a)

s.t.

0 6 xij 6 uij ∀(i, j) ∈ E (4.2b)

∑
{j:(j,i)∈E}

xji −
∑

{j:(i,j)∈E}

xij = di ∀i ∈ V (4.2c)

The objective function 4.2a minimises the total cost of the routing. Constraint 4.2b

ensures that the vehicle flow on each edge is non-negative and does not exceed the

maximum capacity and constraint 4.2c ensures flow conservation.
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Minimum cost multi-commodity network flow problem

Now that we are familiar with the MC problem, we can introduce the minimum cost multi-

commodity network flow problem (MCMC). This is a generalisation of the problem just

described where we want to model heterogeneous commodities from different origins and

destinations. In our application this means that we can define multiple trips with different

origins, destinations, and demands. Each trip will hence correspond to a commodity.

From this point on we will use the terms commodity and trip interchangeably.

We define the set of trips as M = {(sm, tm, dm)} and the demand at each node as

∀i ∈ V, ∀m ∈M dmi =


−dm if i = sm

dm if i = tm

0 otherwise

(4.3)

We represent the vehicle flow of trip m ∈M on edge (i, j) ∈ E as xmij . The minimum

cost multi-commodity flow problem can then be then defined as follows

min
x

∑
m∈M

∑
(i,j)∈E

cijx
m
ij (4.4a)

s.t. ∑
m∈M

xmij 6 uij ∀(i, j) ∈ E (4.4b)

xmij > 0 ∀(i, j) ∈ E , ∀m ∈M (4.4c)

∑
{j:(j,i)∈E}

xmji −
∑

{j:(i,j)∈E}

xmij = dmi ∀i ∈ V, ∀m ∈M (4.4d)

Where the objective function 4.4a minimises the total cost of routing over all the

trips. Constraint 4.4b ensures that the sum of the flows of different trips on each edge

does not exceed the maximum capacity. Constraint 4.4c ensures that no flow is negative.

Constraint 4.4d ensures flow conservation.

Path formulation

According to the flow decomposition theorem, first introduced by [56], we can reformulate

the MCMC problem using the distribution of flow over paths instead of edges. This is

valid under the assumption that for every trip there exist no negative cost cycles in our

graph.

For every trip m ∈ M let Pm denote the set of all possible paths2 from sm to tm.

The cost cp of a path is defined as the sum of the cost of its edges cp =
∑

(i,j)∈p cij . We

also define the total flow of trip m on path p ∈ Pm as xp. The path formulation goes as

follows

min
x

∑
m∈M

∑
p∈Pm

cpxp (4.5a)

2A path is a is a walk in which all vertices (and therefore also all edges) are distinct.
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s.t. ∑
m∈M

∑
p∈Pm:(i,j)∈p

xp 6 uij ∀(i, j) ∈ E (4.5b)

xp > 0 ∀p ∈ Pm, ∀m ∈M (4.5c)

∑
p∈Pm

xp = dm ∀m ∈M (4.5d)

Where the objective function and the constraints map exactly to the ones illustrated

in the edge MCMC formulation.

4.1.2 Trip spanning tree and path additions

Now that we have introduced the routing problem, we turn our attention to the transport

network on which vehicles are routed, represented as a graph.

We start by defining a set of properties which will be common to all the graphs we

will consider. The graphs we will describe will have a cost cij > 0 and a capacity uij > 0

associated to each edge. Furthermore, they will all be subgraphs of a template graph

GT , used to limit the space of possible graph extensions.

We start by introducing the concept of trip spanning tree.

Definition 4.1.1 (Trip spanning tree). Given a set of commodities

M = {(sm, tm, dm)}, a trip spanning tree is a directed graph GI = (VI , EI) with the

following four properties:

1. sm, tm ∈ VI , ∀m ∈M

2. |Pm| = 1, ∀m ∈M

3. ∀n ∈ VI , ∃m ∈M, p ∈ Pm : n ∈ p

4.
∑
m∈M

∑
p∈Pm:(i,j)∈p d

m 6 uij ∀(i, j) ∈ EI

Property (1) states that a trip spanning tree must contain the source and destination

of every trip. Property (2) states that for each origin-destination pair there exists exactly

one path connecting them in the trip spanning tree. Property (3) states that every

node in the trip spanning tree must be part of a path connecting one trip’s origin to its

destination. Property (4) states that the capacity of the paths in the trip spanning tree

must be sufficient to guarantee a feasible solution to the MCMC problem.

We now introduce the concept of a commodity path graph.

Definition 4.1.2 (Commodity path graph). We denote a commodity path graph,

with respect to commodity m ∈ M, as a graph Gx = (Vx, Ex) with the following

properties:

1. sm, tm ∈ Vx

2. |Pm| = 1

3. ∀n ∈ Vx, p ∈ Pm : n ∈ p
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A commodity path graph is thus a path graph3 which contains only a path from one

trip source to its destination. Property (1) states that the origin and destination of such

trip must belong to the commodity path graph. Property (2) states that the commodity

path graph contains only one path between these two. Property (3) states that all the

nodes belonging to the commodity path graph must belong to such path. Therefore,

a commodity path graph is a trip spanning tree with respect to only one commodity,

without the guarantees given by Property (4) of a trip spanning tree.

Given a set of trips and a trip spanning tree for this set, we can model the subsequent

addition of commodity path graphs to the trip spanning tree as a graph union. The

graph obtained by adding a commodity path graph Gx = (Vx, Ex) to the trip spanning

tree GI = (VI , EI) is described as GI⊕x = (VI ∪Vx, EI ∪Ex). Note that, by this addition,

the commodity path graph can introduce multiple new nodes and edges not previously

contained in the trip spanning tree and thus also multiple paths for each commodity. The

number of new paths introduced is limited only by the graph template GT (remembering

that GI ⊆ GT and Gx ⊆ GT ).

We illustrate the concept of trip spanning tree and commodity path addition with

an example, shown in Figure 4.1. In this simple example we have only two trips

M = {(s1, t1, d1), (s2, t2, d2)}. We instantiate a possible trip spanning tree (4.1a) and

a possible commodity path graph (4.1b) for trip 1. The resulting graph union GI⊕x is

shown in 4.1c. Note that in this case Gx adds one path for trip 1 and none for trip 2,

but this may not always be the case.

(a) GI (b) Gx

(c) GI⊕x

Figure 4.1: A simple transport network example to illustrate graph unions. Here we have a
trip spanning tree (GI) and a commodity path graph (Gx) that are being unified into GI⊕x.

3https://en.wikipedia.org/wiki/Path_graph
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Let us introduce some further notation related to graph unions. Let us take a graph

GA = (VA, EA), obtained after n > 0 commodity path graph additions to a trip spanning

tree, and a commodity path graph Gx = (Vx, Ex). We denote with PmA the set of all paths

for commodity m in GA, with Pmx|A the set of all paths added by Gx to GA for commodity

m, and with Pmx⊕A the set of all paths for commodity m in Gx⊕A. Note that Pmx|A is

defined as Pmx|A = Pmx⊕A \ PmA . From this definition we obtain that Pmx⊕A = Pmx|A ∪ P
m
A ,

with Pmx|A ∩ P
m
A = ∅. It is important to note that the set Pmx|A will always be a super

set of Pmx (Pmx ⊆ Pmx|A). We also define PA =
⋃
m∈M PmA .

Let us look at another example to exemplify this notation. Suppose that there exists

only one trip M = {(s1, t1, d1)}. In Figure 4.2, we can see a trip spanning tree GI for

trip 1 (shown in black) and a commodity path graph Gx for the same trip (shown in

red). Therefore, we will have |P 1
I | = |P 1

x | = 1. These two sets will contain the black and

the red path respectively. The set P 1
x⊕I = P 1

x|I + P 1
I will contain four paths: three of

which come from the set P 1
x|I and the last being the original path present in P 1

I .

Figure 4.2: Simple transport graph to illustrate the addition of a commodity path graph.
In this figure we have a trip spanning tree GI for trip 1 (shown in black) to which we add a
commodity path graph Gx for the same trip (shown in red). We see how, by only adding one
commodity path graph to the trip spanning tree, we obtain four total paths for trip 1.

4.1.3 Properties of path additions

Given a finite set of commodity path graphs G, we define the function Λ : 2G 7→ R which

takes as input a subset of G and adds it to a fixed trip spanning tree defined over a fixed

set of commodities and outputs the value of cost function 4.5a on the resulting graph,

while following constraints 4.5b, 4.5c, and 4.5d.

Let’s take as an example A ⊆ G which is a set of commodity path graphs. For our

purpose this set is equally identified by the union of all the graphs in it, which we call

GA =
⋃
G∈AG which is also identified by the set of its commodity paths PA. Therefore

we can write

Λ(A) = min
x

 ∑
m∈M

∑
p∈Pm

A⊕I

cpxp

 (4.6)

where PmA⊕I represents the set of paths for commodity m in graph GA⊕I where GI is

the fixed trip spanning tree.

Note that we need the trip spanning tree GI to guarantee that even when Λ is

computed on the empty set (Λ(∅)) there is still a feasible flow for each trip and each
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trip source its connected to its destination.

Theorem 4.1. Given two sets of commodity path graphs A and B such that A ⊆ B ⊆ G,

we have that Λ(B) 6 Λ(A), thus Λ is a monotonic non-increasing function of the set G.

Proof. For brevity, the proof can be found in Appendix A.1. �

Now, we want to see if Λ is supermodular on the set G. To prove it, we need to show

that: given two subsets A and B such that A ⊆ B ⊆ G and x ∈ G \ B, it holds that

Λ(A)− Λ(A ∪ {x}) > Λ(B)− Λ(B ∪ {x}) (4.7)

Theorem 4.2. Λ is not a supermodular function of the set the set G.

Proof. We show that supermodularity does not hold by finding a counterexample. Fur-

thermore, the counterexample found is valid also in the case of a single commodity.

Therefore, Λ is proven not to be supermodular even in the simple MC problem. We will

now illustrate the counterexample.

The example is illustrated in Figure 4.3. It is characterised by the following data:

• There is only one trip M = {(s1, t1, 5)} with a demand of 5

• Every edge has a capacity of 5

• Edges shown in black have a cost of 2

• All other edges have a cost of 1

We take A = ∅, x = Gx, and B = Y = GY as shown in Figure 4.3.

Equation 4.7 becomes

Λ(∅)− Λ({x}) > Λ(Y)− Λ(Y ∪ {x}) (4.8)

Which we rewrite as

min
x

 ∑
m∈M

∑
p∈Pm

I

cpxp

−min
x

 ∑
m∈M

∑
p∈Pm

x⊕I

cpxp

 >
min
x

 ∑
m∈M

∑
p∈Pm

Y⊕I

cpxp

−min
x

 ∑
m∈M

∑
p∈Pm

x⊕Y⊕I

cpxp


(4.9)

Which when solved reduces to

30− 30 > 30− 25 (4.10)

Proving that Λ is not a supermodular function of the set G. �

It is now proven that in the general case of commodity path graphs that can have

common edges and nodes, Λ is not supermodular.

Research question. Is Λ supermodular when the added commodity path graphs

paths are allowed to have common nodes but not common edges? In other words, we

restrict the set G to G′ = {x|x ∈ G ∧ ∀y ∈ G, y 6= x → Ex ∩ Ey ∩ EI = ∅}. Is Λ a

supermodular set function of G′?
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(a) GY (b) Gx

(c) GY⊕I (d) Gx⊕I (e) Gx⊕Y⊕I

Figure 4.3: Counterexample of supermodularity when added commodity path graphs are
allowed to have common nodes and edges.

Theorem 4.3. Λ is not a supermodular function of the set the set G′.

Proof. Also in this case the answer is negative. We show this result through a counterex-

ample.

Let us consider the graph depicted in Figure 4.4 where GI is shown in black, GY

is shown in blue, and Gx is shown in red. We still consider A = ∅, B = Y = GY and

x = Gx, thus, Equation 4.8 still holds. This example is characterised by the following:

• There is only one trip M = {(s1, t1, 1)} with a demand of 1

• Every edge has a capacity > 1

• Edges shown in black have a cost of 3

• All other edges ave a cost of 1

When solving Equation 4.9 we now obtain

15− 13 > 13− 7 (4.11)

Which does not hold, proving that Λ is not supermodular on G′. �

4.1.4 Parallel paths

Having proven that Λ is not supermodular on G′, we now consider the case of parallel

commodity path graphs. In particular, we also restrict our attention to the single

commodity case (MC problem), as, due to the parallel nature of the paths we consider,

each commodity can be treated independently.

We thus restrict the space of possible commodity path graph additions to G′′ =

{x|x ∈ G′ ∧∀y ∈ G′, y 6= x→ Vx ∩Vy ∩VI = {s, t}} where s, t are respectively the origin

and destination of the considered commodity (s, t, d).
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Figure 4.4: Counterexample of supermodularity when added commodity path graphs are
allowed to have common nodes but not common edges.

The graphs considered in this section are obtained after multiple additions (taken

from G′′) to a trip spanning tree. They will be represented using two nodes: origin (s)

and destination (t), and a set of directed edges, representing the parallel paths connecting

s with t. Each path has a cost cp =
∑

(i,j)∈p cij and a capacity up = min(i,j)∈p uij . An

example of such network can be seen in Figure 4.5.

s t

cI , uI

c1, u1

c2, u2

...

cn, un

...

Figure 4.5: An example of a graph in the single commodity parallel paths case. Here we can
see the trip spanning tree GI (which in this scenario is always consisting of just one path with
cost cI and capacity uI) and some commodity path graphs numbered from 1 to n. The notation
on the edges shows cost and capacity of each path, separated by a comma.

In the remaining of this section, we prove that Λ is supermodular on G′′ when it

holds that ∀x ∈ G′′ ux > d, meaning that each possible addition is able to sustain the

entire flow demand d.

In this scenario, the MC assignment becomes trivial, as the best solution is always to

route the whole flow demand on the minimum cost path available in the graph. Hence,

we can rewrite 4.5a as follows

min
x

∑
m∈M

∑
p∈Pm

cpxp = min
x

∑
p∈P

cpxp = dmin {cp|p ∈ P} (4.12)

Lemma 4.4. Given the sets of paths PA and PB obtained respectively from graphs

GA, GB, we have that PA, PB ⊆ PA⊕B.

Proof. The proof follows from the fact that graph GA⊕B is defined as GA⊕B = GA ∪GB
and thus we can write PA ∪ PB ⊆ PA⊕B. Hence, we can rewrite the thesis of Lemma 4.4

as PA, PB ⊆ PA ∪ PB which is true by the definition of the union over sets. �

Theorem 4.5. Given the set of possible parallel path additions G′′ and the function Λ,

if ∀x ∈ G′′ ux > d then Λ is a supermodular function of the set G′′.
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Proof. For brevity, the proof can be found in Appendix A.2. �

The proof heavily depends on the fact that each path can sustain the entire flow.

Therefore, the addition of a new path can either:

• Make no change (because it has a higher cost than the best path already in the

graph) and will continue to make no change when considering adding it to a superset

of the graph.

• Make an improvement (because it is the new best path). The improvement is

its cost minus the previous best cost. Adding this path to superset of the graph

will at best make the same improvement (if the superset graph has the same best

cost) or a smaller improvement (if the superset graph has a better best cost than

previously).

4.2 Congestion-aware routing

4.2.1 Flow-dependant cost

Up to this point we have investigated the impact of path additions in the traditional

formulations of the MCMC and MC problems. This is a good starting point to theoreti-

cally characterise the problem at hand, but, in reality, it is often not possible to map

the travel time of road segments to a constant cost. In fact, the travel time required

to traverse a road is highly dependent on traffic congestion. This dependence has been

observed and characterised since early traffic studies [9].

To model this dependence we will use the fundamental diagram of traffic flow,

introduced by Greenshields [9, 10]. The cost of an edge will be modeled by a function

ce : [0, ue] 7→ R+, that takes as input the amount of flow xe routed on edge e and outputs

the cost. It is defined as follows

ce(x) =
le

vmaxe

(
1− x

ue

) (4.13)

Where vmaxe is the maximum velocity allowed on edge e and le is the length of e.

Note that the input variable xe has to be a feasible assignment and thus 0 6 xe 6 ue.

We chose this formulation as it is known to be one of the simplest yet most effective

models for flow-dependant cost.

We now introduce Lemma 4.6 which we will use in later sections.

Lemma 4.6. The function ce is convex.

Proof. The proof is trivial and can be found in Appendix A.3 �

Another frequently considered latency function is the The Bureau of Public Roads

(BPR) cost function [8]. The function is computed as:

cBPR
e (x) = c0e

(
1 + α

(
x

ue

)β)
(4.14)
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where c0e and ue are the free-flow time and capacity of link e, respectively, and α and

β are shape parameters which can be calibrated to data. In this work we use α = 0.15

and β = 4. Although this function is not used in this chapter, all the insights we gain

remain valid also for this latency function.

4.2.2 System optimal routing

Now we can use the cost function just introduced to extend our formulation of the

MCMC problem. We briefly recall the relevant notation. We consider a graph G = (V, E)

and a set of commoditiesM = {(sm, tm, dm)}. We denote the set of paths connecting sm

to tm as Pm and define P =
⋃
m∈M Pm. Each edge e ∈ E is assigned the flow-dependant

cost function ce introduced in the previous section. The vector of edge cost functions ce

is noted as c. We call the triple (G,M, c) an instance.

The cost of a path p ∈ P with respect to a flow x is defined as the sum of the cost of

the edges in the path cp(x) =
∑
e∈p ce(x)

The optimal flows are then characterised by the following System Optimal (SO)

routing problem

min
x

∑
p∈P

xpcp(xp) (4.15a)

s.t.

xp > 0 ∀p ∈ P (4.15b)

∑
p∈Pm

xp = dm ∀m ∈M (4.15c)

Where constraint 4.15b states that all flows must be non-negative and constraint 4.15c

imposes the conservation of flow for each commodity.

Note that the objective 4.15a can be also written as

min
x

∑
e∈E

xece(xe) (4.15d)

But, in this case, we are forced to introduce an extra constraint imposing that the

flow on an edge is equal to the sum of all the flows of the paths that pass through it:

xe =
∑

p∈P :e∈p
xp ∀e ∈ E (4.15e)

Since the local and global optima of a convex function on a convex set coincide [57],

we now that a locally optimal solution for SO is also globally optimal whenever the

objective function 4.15a is convex. By Lemma 4.6 we know that this is true for ce and

thus for cp since a non-negative weighted sum of convex functions is still convex.

We know that a flow is locally (and globally) optimal if and only if moving flow

from one path to another can only increase the global cost 4.15a. That is, we expect to

have optimality when the marginal benefit of decreasing flow on a sm − tm path is at

most the marginal cost of increasing flow on another sm − tm path [11]. Let us denote
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ke(x) = xece(x). We write the derivative of ke as k′e and define k′p(x) =
∑
e∈p k

′
e(x). We

then have

Lemma 4.7 ([58, 59, 11]). The flow computed by a convex program of the form (SO)

is optimal if and only if for every m ∈ M and p1, p2 ∈ Pm with xp1 > 0, we have

k′p1(xp1) 6 k′p2(xp2).

4.2.3 User equilibrium routing

By solving the SO problem we obtain the minimum average travel time for all the trips

(commodities). On the other hand, some trips could have been disadvantaged with

respect to others for the system’s benefit. This causes the SO assignment to be unfair to

some users.

A fair assignment is the User Equilibrium (UE). It induces a Nash equilibrium in

which no user can improve its travel time (cost) by choosing a different route. It is

also known as Wardrop equilibrium [6]. This equilibrium emerges when we consider the

routing problem as a non-cooperative game, where each user, seen as a fraction of the

flow, chooses the fastest route available according to the current traffic conditions. In

this sense, users routed according to UE can be defined as self-interested or selfish.

Lemma 4.8 ([11]). A feasible flow for instance (G,M, c) is at UE if and only if for

every m ∈M and p1, p2 ∈ Pm with xp1 > 0, we have cp1(xp1) 6 cp2(xp2).

In particular, if a flow is at UE, all the paths of commodity m for which cp > 0 have

the same cost Cm.

Lemma 4.9 ([11]). If a flow is at UE for instance (G,M, c), then the overall average

cost (travel time) is

∑
p∈P

xpcp(xp) =
∑
m∈M

dmCm (4.16)

This means that all users on the same trip will arrive at the same time to their

destination under the user assignment.

Lemma 4.10 ([11]). Given an instance (G,M, c), if there exists a feasible flow as-

signment, there always exists a feasible flow assignment at UE. Furthermore, given two

assignments at UE, they will have the same total cost (travel time) (shown in Eq. 4.16).

Lastly, let us define the UE routing problem as follows

min
x

∑
e∈E

∫ xe

0

ce(t)dt (4.17a)

s.t.

xp > 0 ∀p ∈ P (4.17b)

∑
p∈Pm

xp = dm ∀m ∈M (4.17c)
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xe =
∑

p∈P :e∈p
xp ∀e ∈ E (4.17d)

Where the constraints are the same as in the SO case, with the addition of 4.15e.

4.2.4 Differences between system optimal and user equilibrium

routing

The SO and UE problems are very different. In particular, when considering the UE

formulation, we trade-off total travel time for fairness and self-interest.

However, by looking at Lemmas 4.7 and 4.8 we can notice some similarities. The

striking similarity between the characterizations of optimal solutions to the SO and

UE problems was noticed early on [58], and provides an interpretation of an optimal

flow as a flow at UE with respect to a different set of edge cost functions [11]. To

make this relationship precise, denote the marginal cost of increasing flow on edge e by

c∗e(x) = k′e(x) = (xece(x))′ = ce(x) + xec
′
e(x). Lemmas 4.7 and 4.8 yield the following

corollary.

Corollary 4.11 ([11]). Let (G,M, c) be an instance and c∗ be the vector of marginal

cost functions defined as above. Then, a flow feasible for (G,M, c) is optimal if and only

if it is at UE for the instance (G,M, c∗).

4.2.5 Properties of path additions

Given a finite set of commodity path graphs H with flow-dependent edge costs ce, we

define function ΛO : 2H 7→ R which takes as input a subset of H and adds it to a fixed

trip spanning tree defined over a fixed set of commodities and outputs the optimal value

of the SO assignment and function ΛU : 2H 7→ R which does the same thing for UE.

Let us take as an example a set of commodity path graphs A ⊆ H; ΛO and ΛU are

then computed as

ΛO(A) =
∑

p∈PA⊕I

xOp cp(x
O
p ) (4.18a)

ΛU (A) =
∑

p∈PA⊕I

xUp cp(x
U
p ) (4.18b)

Where xO and xU are respectively the solutions to the SO (4.15) and UE (4.17) flow

problems.

Theorem 4.12. Given two subsets of commodity path graphs A and B such that A ⊆
B ⊆ H, we have that ΛO(B) 6 ΛO(A), thus ΛO is a monotonic non-increasing function

of the set H.

Proof. The proof of Theorem 4.1 can be extended to this case. �

Note that Braess’ paradox represents a proof that the same theorem does not hold

for ΛU .
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Now, we proceed to prove that ΛO and ΛU are not supermodular functions of set

H′ ⊆ H, defined as H′ = {x|x ∈ H ∧ ∀y ∈ H, y 6= x → Ex ∩ Ey ∩ EI = ∅}, the set of

commodity path graphs that do not have any common edges.

Theorem 4.13. ΛO and ΛU are not supermodular set functions of H′, and thus of H.

Proof. The counterexamples of Figure 4.3 and Figure 4.4 can be extended for this case.

Here, for completeness, we show it in a more compact network, depicted in Figure 4.6.

Figure 4.6: Compact counterexample of supermodularity when added commodity path graphs
are allowed to have common nodes but not common edges.

GI is shown in black, GY is shown in blue, and Gx is shown in red. We still consider

A = ∅, B = Y = GY and x = Gx, thus, Equation 4.8 still holds. This example is

characterised by the following:

• There is only one trip M = {(s1, t1, 5)} with a demand of 5

• Every edge has a capacity ue = 10

• Edges have a length le = 1, a speed limit vmaxe = 1

To compute the SO and UE assignments, we build this network in our macroscopic

traffic simulator and we use the Frank-Wolfe algorithm (Sec. 5.1.2) to obtain the travel

times. We confirm the obtained values by exact hand calculations. When solving

Equation 4.9 for ΛO we now obtain:

ΛO(∅)− ΛO({x}) > ΛO(Y)− ΛO(Y ∪ {x})

30− 29.28 > 27.47− 24.97
(4.19)

While for ΛU we obtain:

ΛU (∅)− ΛU ({x}) > ΛU (Y)− ΛU (Y ∪ {x})

30− 30 > 30− 26.66
(4.20)

Both equations do not hold. �

4.2.6 Identical parallel paths

Let us move our attention to the case of a single commodity (s, t, d) and a set of parallel

and identical commodity path graphs. In particular, we consider a set H′′ ⊆ H′ in which
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every path is parallel and connects s with t. All the paths have the same length l, the

same maximum velocity vmax and the same capacity u.

Thanks to these assumptions, we can use the following flow assignment

xp =
d

n
∀p ∈ P (4.21)

Where n = |P | is the number of parallel paths available. We can rewrite the objective

function 4.15a of SO as

min
x

∑
p∈P

xpcp(xp) = dcp

(
d

|P |

)
(4.22)

Lemma 4.14. Given an instance (GA⊕I ,M, c) where A ⊆ H′′ and M = {(s, t, d)},
assignment 4.21 is an optimal solution for the UE problem

Proof. By Lemma 4.8 we know that if we can show that ∀m ∈ M and p1, p2 ∈ PmA⊕I
with xp1 > 0, we have cp1(xp1) 6 cp2(xp2) then the assignment is at UE.

Given that all paths are identical and, under assignment 4.21, all flows are positive,

we can rewrite

cp1(xp1) 6 cp2(xp2) (4.23)

as

l

vmax

(
1− d

|PA⊕I |u

) 6 l

vmax

(
1− d

|PA⊕I |u

) (4.24)

Which is always true. �

Lemma 4.15. Given an instance (GA⊕I ,M, c) where A ⊆ H′′ and M = {(s, t, d)},
assignment 4.21 is an optimal solution for the SO problem

Proof. By Lemma 4.7 we know that if we can show that ∀m ∈ M and p1, p2 ∈ PmA⊕I
with xp1 > 0, we have k′p1(xp1) 6 k′p2(xp2) than the assignment is at UE.

Given that all paths are identical and, under assignment 4.21, all flows are positive,

we can rewrite

k′p1(xp1) 6 k′p2(xp2) (4.25)

as  d

|PA⊕I |
· l

vmax

(
1− d

|PA⊕I |u

)
′ 6

 d

|PA⊕I |
· l

vmax

(
1− d

|PA⊕I |u

)
′

(4.26)

Which is always true. �

Theorem 4.16. ΛO and ΛU are supermodular functions of the set H′′

Proof. For brevity, the proof can be found in Appendix A.4. �
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4.3 Summary

In this chapter, we have shown that the rather intuitive property of supermodularity of

path additions to transport networks where AVs are routed does not hold in the general

case of multiple AVs’ trips and in the simpler case of a single trip. We have proven

this for the min-cost multi-commodity flow problem and for the SO and UE routing

formulations.

We have also shown that in the more specific case of parallel paths, we have diminishing

returns upon the addition of new paths. We have proven this in the case of parallel

paths with different costs for the minimum-cost network flow problem and in the case

of identical parallel paths in the flow-dependant cost formulation, where we have also

shown that the solutions to the SO and UE routing problems coincide.
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Chapter 5

Transport network design

In this chapter, we introduce the problem of optimising the transportation network for

Autonomous Vehicles (AVs) routed according to the User Equilibrium (UE), which is a

self-interested and fair routing paradigm. We formalise two different optimisation tasks.

In the first one, we consider a trip spanning tree (Sec.4.1.2), resulting from a set of

AVs trips, to which we aim to add commodity path graphs in order to minimise the total

system travel time. In other words, we start with a minimal transportation network that

barely permits agent movement and we seek optimal ways to extend it. To solve this

problem, we propose a greedy algorithm.

In the second one, we start with a network topology (e.g. a city), where we believe

that Braess’ paradox occurs, and we seek to reduce the edge capacities in order to make

the selfish users behave optimally (minimise the total system travel time). Our capacity

reduction is similar to a road pricing scheme, in the sense that we show some roads to

users as more costly than they really are, but costs are not fictitious as they are always

mapped to edge capacities, which are real topology parameters. To solve this problem,

we employ a Genetic Algorithm (GA) and Reinforcement Learning (RL).

The chapter is structured as follows: In Section 5.1 we introduce the bilevel formulation

of network design, in Section 5.2 we discuss network design through path additions, in

Section 5.3 we discuss network design using capacity reductions, and, finally, Section 5.4

summarises the chapter.

5.1 The bilevel problem

The network design problem (NDP) is formulated as a bilevel programming optimisation

task. Its structure is depicted in Figure 5.1.

At the upper level, the network designer is interested in modifying the network

topology in order to minimise the total system travel time. At the lower level, users

receive a transportation network and route greedily in it according to the UE. Note that

the network designer cannot control the users’ routing directly, but only influence it

through topology modifications.
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Modify topology User routing

Network designer

Selfish users

Figure 5.1: Network design as a bilevel optimisation problem. The designer can modify the
network topology and observe how user redistribute.

The problem has the following structure:

min
y
F (y,x(y)) (5.1a)

s.t.

G(y,x(y)) 6 0 (5.1b)

where x(y) is determined as the result of:

min
x
f(y,x) (5.2a)

s.t.

g(y,x) 6 0 (5.2b)

F is the objective function of the network designer, y is the topology decision vector,

G is the constraint set of the upper level decision vector, f is the objective function of

the users, x is the decision vector of the users, and g is the constraint set of the lower

level decision vector.

Even if the upper and lower level are both convex optimisation problems, the bilevel

problem in its entirety is non-convex [60], as users’ decisions act as a nonlinear constraint

for the upper level. Thus, traditional convex optimisation solution methods are not

applicable to this problem.

5.1.1 Upper level

In this chapter, we will see two different formulations of the upper level problem: path

additions and capacity reductions. They are discussed in Section 5.2 and Section 5.3

respectively.
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5.1.2 Lower level

The lower level is always fixed: Given a network and a set of trips with their demands,

also called Origin-Destination (OD) matrix, compute the UE routing flows. In other

words, solve Problem 4.17 to obtain xU . We tackle it using two approaches.

For the first task (5.2) we employ microscopic traffic simulations using SUMO [2]. To

compute the UE traffic assignment, we reproduce the work from self-aware routing [3],

without considering the probabilistic component. We also use SUMO’s implementation

of dynamic UE routing [15] and a one-shot assignment approach1.

For the second task (5.3) we employ traditional macroscopic traffic simulation. We

build our own simulator which is compatible with network and trips definitions in the

tntp format2. We implement the Method of Successive Averages [61] and the Frank-Wolfe

convex optimisation algorithm [4] that can both efficiently compute the UE and SO

traffic assignments. Our traffic assignment algorithm has been tested on all the networks

available in this traffic research repository2 and has reported correct results. We make

the simulator and assignment solver available as standalone products. They are already

being used by other researchers.

5.2 Path additions

We now formulate the path additions network design problem. This problem considers

a trip spanning tree and a fixed OD matrix to be given. A set of possible commodity

path graphs H is also defined. All these graphs are subgraphs of a graph template GT

which defines the topology to follow during construction. The set H of possible additions

is constructed by considering the k-shortest paths between each trip’s source and its

destination in GT . Therefore |H| = NT k, where NT is the number of trips and k is

the number of possible additions considered for each trip. We are interested in finding

the optimal subset A ⊆ H in order to minimise the total system travel time when A is

subject to cardinality constraints. For our purpose, the set of path graph additions A is

equally identified by the graph GA = ∪G∈AG. The problem is formalised as follows.

argmin
A⊆H

ΛU (A) (5.3a)

s.t.

|A| 6 Np (5.3b)

|VA \ VI | 6 Nv (5.3c)

|EA \ EI | 6 Ne (5.3d)

Where GA = (VA, EA) and Np, Nv, Ne are cardinality constraints on the num-

ber of added paths, nodes, and edges respectively. Recall the definition ΛU (A) =∑
p∈PA⊕I x

U
p cp(x

U
p ) , which computes the total travel time of users following the UE.

1https://sumo.dlr.de/docs/Tools/Assign.html#one-shotpy
2www.github.com/bstabler/TransportationNetworks
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Clearly, problem 5.3 is the upper level of our general bilevel network design formulation.

Here, the topology decision variables y consist in a 0/1 associated to each element in H,

indicating if it is included in A or not. In particular, in addition to the non-convexity

resulting from the bilevel structure, the discrete decision variables of Problem 5.3 make

it an NP-Hard discrete network design problem [47]. Thus, efficient exact solutions are

computationally infeasible and heuristics and approximations can be used. In this work,

we use a greedy algorithm that, at each design iteration, adds to the current set A the

path that reduces the total travel time the most and does not break the constraints.

Having proven the non-supermodularity of ΛU , we cannot provide sub-optimality bounds

for our algorithm.

Problem 5.3 is relevant when the template of the transport network is available (e.g.

a warehouse) and the network designers want to be informed on how different possible

layouts will affect the overall routing performance of AVs. Thus, they can formulate

the problem through path additions and restructure the network topology online when

the AVs origin, destinations and demands change. Our method, in fact, takes as input

a network template and AVs trip requests and, in a trivial time, outputs an optimal

sub-topology of the original layout which optimises the total travel time and is Braess’

paradox free.

5.3 Capacity reduction

The network design problem can also be tackled starting from an existing graph. In

this problem, we are given a graph G = (V, E) and a fixed OD matrix. The goal is to

decrease the edge capacities seen by the users in order to minimise the total travel time.

The problem is formulated as follows.

min
y

∑
e∈E

xUe (y)ce(ue, x
U
e (y)) (5.4a)

s.t.

0 6 ye 6 ue ∀e ∈ E (5.4b)

ye ∈ R ∀e ∈ E (5.4c)

Where the designer decision vector y = (y0, y1, . . . , ye, . . . , yN ) is the vector of the

users’ edge capacities with N = |E|, which cannot exceed the real capacities u. xU (y) is

the solution to the lower level problem in which the users distribute according to the

UE using y as edge capacities instead of u. Note that the reduced capacities y are only

seen by users. In the upper level (Problem 5.4) we still use the original capacities u to

compute the total travel time. This can be seen as implementing tolls for the users just

by showing some roads as having less capacity than they really have. The cost ce(y, x) is

the BPR function 4.14, computed as:

ce(y, x) = c0e

(
1 + 0.15

(
x

y

)4
)

(5.5)
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Where y is the capacity, x is the flow, and c0e is the edge free-flow travel time. Note that

any travel time link function could be used.

This problem may seem very similar to traditional network design problems [47],

but it has some key differences. Firstly, we leverage the insight that, due to the Braess’

paradox, the current network may be used inefficiently; we aim to solve this issue by

allowing continuous capacity decreases (note that the case of entire edge removals is

contained in our problem and can be achieved when ye = 0), while traditional network

design only considers continuous capacity increases under a construction budget. This

is a radical perspective, as our method, unlike continuous network design, is able to

optimise networks without the need to physically modify them. Secondly, it brings

together the concepts of road pricing policies and environment design by increasing the

cost of non-optimal roads through capacity reductions. The main innovative insight is

that we are able to optimise networks used by selfish users just by simulating the removal

of infrastructure. Lastly, our method optimises the system’s throughput while having

users routing according to UE at all stages, thus achieving benefits for the system while

avoiding the unfairness of SO routing.

5.3.1 Reinforcement learning

We formulate the capacity reduction network design problem from a RL perspective.

Under this view, we consider a single RL agent as the network designer, which can take

actions to move in the search space of problem 5.4. The agent can decide to modify the

capacity of one edge per time step and observe the users’ routing response following such

modification. This characterises its reward.

Environment

The agent has full observability of the state space. The state at time t is a vector

st ∈ RN×F where N is the number of edges in the transport network and F is the

number of features considered for each edge. In this work we consider only two features:

current flow x on the edge and current visible edge capacity y. Note that by having

access to these features, the agent can derive the OD matrix. The transport network

topology is given to the agent during initialisation. The agent has two actions for each

edge, at ∈ {0, 1, . . . , 2N − 1}, which lead respectively to decreasing and increasing the

visible capacity ye of the edge as:

∀e ∈ E , ye =


max(0, ye −∆uue), if at = 2e

min(ue, ye + ∆uue), if at = 2e+ 1

ye, otherwise

(5.6)

With 0 6 ∆u 6 1. In this work we use ∆u = 0.1 (actions move ye with steps of 10%

of the real capacity). For example, if at the beginning of an episode we have y = u and

the agent selects ten times in a row action 2, he will bring the visible capacity y1 of edge

1 to 0, by then selecting action 3 ten times in a row, the agent goes back to the initial

state. The reward rt+1 ∈ R is defined as the percentage of relative improvement in the
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total travel time after action at.

rt+1 = 100

(
1− Total travel time after at

Total travel time before at

)
(5.7)

Graph neural network model

In order to train the agent we use PPO (Sec. 2.5) and the RLlib [62] framework. For both

the actor and the critic we use a Graph Neural Network (GNN). The idea behind using

GNNs in our model is to leverage the intrinsic graph structure of the road network during

the learning process, enabling sharing information between neighbouring roads using

Graph Convolutions [63]. The GNNs in our model are line graphs of the transportation

network, thus, every node in the GNN represents an edge in the road network.

The models are depicted in Figure 5.2. Although the actor and the critic do not

share any parameters, they share the same architecture for the first part of the pipeline.

The model input is the state of dimension RN×F where N is the number of roads and

F = 2 are the road features. The state vector is passed through a Multi Layer Perceptron

(MLP) which expands the feature dimension RN×F → RN×G. Each of the N road

vectors is then associated to the corresponding node in the GNN, which has two graph

convolution layers [63] that preserve the dimension RN×G. The architecture of the actor

and the critic differs from this point on. For the actor, the G features of each GNN

node go through an MLP which maps them to the probabilities of the two edge actions

RN×G → RN×2. For the critic, we employ global mean pooling of the GNN node vectors

RN×G → R1×G and finally pass it through an MLP which maps it to the state value

R1×G → R1×1. To all the layers we apply hyperbolic tangent non-linear activations and,

for the actor head, we use a softmax activation to get the action probabilities from the

logits. We use an embedding dimension G = 64.

5.3.2 Genetic algorithm

The Genetic Algorithm (GA) used to solve the capacity reduction problem follows the

outline introduced in Section 2.4. Here, an individual is represented by the vector

z = (z0, z1, . . . , zN ) such that, for an edge e, the visible capacity ye = zeue. Therefore,

the elements of z are all real numbers between 0 and 1 included, representing the portion

of real capacity shown to the users. The elements of the vector z are also referred to as

the genes of the individual.

During phase 0, we initialise a population of nPOP individuals. All of the individuals

start with all the genes set to 1. This has shown to be better in practice than initialising

genes randomly, because the optimal solution will probably be located in the vicinity of

the initial transport network structure3. A GA iteration, also referred to as a generation,

is structured as follows. During phase 1, we compute the fitness of each individual as

the total travel time that the users would experience in the network characterised by

its z. The fittest individual is picked and compared with the previous fittest in order

to update the best solution obtained so far. Then, the nCARRY fittest individuals are

directly added to the next generation and skip the following phases. To fill the remaining

3We are removing infrastructure, random initialisation leads to a very non-optimal start.
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Figure 5.2: PPO actor and critic models.

nPOP−nCARRY spots for the next generation, we proceed as follows: For each spot to fill,

we randomly choose nPOP

3 individuals from the current generation and select the fittest,

that is then placed in that spot. During phase 2, these nPOP − nCARRY individuals are

grouped into pairs. For each pair, we perform crossover at a random index in the pair’s

gene vectors according to a probability pCROSS. If crossover is performed, each pair is

substituted by the respective children pair. Finally, during phase 3, with a probability

pMUT, each gene of the nPOP − nCARRY individuals is mutated according to

ze = max(0,min(1, ze + U(−∆u,∆u))) (5.8)

Where U(−∆u,∆u) indicates a value sampled from the uniform distribution between

−∆u and ∆u. The step ∆u = 0.1, as in the RL actions, helps clipping the maximum

mutation by giving a boundary on the difference between the new and old gene. This

component is somewhat similar to the concept of clipping in the PPO loss function.

After mutation, the next generation restarts from phase 1. As we do not initialise the

population randomly, the main power of our evolutionary formulation resides in the

design of the mutation function..

5.4 Summary

In this chapter, we have formulated two innovative network design tasks. We tackled the

problem of designing networks for selfish users routed with UE first from a bottom-up and

then from a top-down perspective. We have seen how both these optimisation tasks can

be of interest for network designers and can help tackle real-world problems. In particular,
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unlike previous work, we are not interested in efficiently building new infrastructure

under construction costs, but we focus on bridging the gap between SO and UE by

making better use of the current transport network. A wide range of solution approaches

are proposed, such as a greedy algorithm and a genetic algorithm. We also formulate

the problem under a RL perspective, where a network designing agent has to traverse

a non-convex optimisation space leveraging the power and structural expressiveness of

GNNs. In the next chapter, we present an evaluation of the proposed solutions.
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Chapter 6

Evaluation

In this chapter, we evaluate the proposed solutions for the two network design tasks

formulated. We also compare different routing paradigms and benchmark our implemen-

tation of Self-aware routing [3] in a range of urban scenarios in SUMO. Experimental

evidence of Theorem 4.13 is provided. Path additions are evaluated in custom grid

networks, while capacity reductions are run on the Braess’ network as well as on six

real-world transport networks: Anaheim (USA), Barcelona (Spain), Chicago (USA),

Eastern Massachusetts (USA), Sioux Falls (USA), and Winnipeg (Canada).

6.1 Path additions

In this section, we provide evaluation results for the path additions network design

problem (Equation 5.3).

6.1.1 Experimental setup

Generating networks

The experiments for this problem are carried out in the microscopic traffic simulator

SUMO [2]. We focus on studying the problem of path additions for vehicle routing in the

context of urban transport networks. For this reason, our graph templates GT are lattice

grids, resembling the topology of cities. These networks represent a portion of a city or

a district. Grids have been chosen since ancient Roman times as the main topology for

urban environments and, still today, characterise the outline of many major cities in the

world (e.g., New York). An example of a 5× 5 grid template is shown in Figure 6.1.

To allow custom grid network generation, we implement a framework that seamlessly

integrates the NetworkX1 python library and SUMO networks. Users can build custom

grid networks and specify a wide range of network parameters. In Table 6.1 we report

the main parameters as well as the default values we use in our simulations.

1www.networkx.org

37

www.networkx.org


Figure 6.1: Custom generated 5 × 5 grid network in SUMO.

Table 6.1: Transport network parameters used in SUMO.

Parameter name Default

Grid width (NG) 10
Grid height NG
Road length 100 m
Road length standard deviation 0
Road speed limit 13.9 m/s
Number of lanes 1

Generating trips

After the network is generated, it is possible to generate vehicles’ trips and demands, also

called origin-destination (OD) matrix. Our trip generation tool always generates trips

that start and end from the outer nodes of the grid. Two different modes are available:

“left to right” and “random”. “Random” selects origins and destinations randomly, while

“left to right” selects origins and destinations respectively from the left and right sides of

the grid. In this work we use the “left to right” mode. Also in this case, the user can

select from a wide range of parameters. In Table 6.1 we report the main parameters as

well as the default values we use in our simulations.

Table 6.2: Vehicle parameters used in SUMO.

Parameter name Default

Number of trips (NT ) 5
Number of vehicles per trip (NV ) 100
Vehicles’ max acceleration 2.6 m/s2

Vehicles’ max deceleration 4.5 m/s2

Vehicles’ length 5 m
Minimum gap between vehicles 2.5 m
Speed standard deviation 0.2

NG, NT , and NV are the parameters we will vary in our simulations to obtain results

for different city sizes and congestion levels. All other parameters will be kept as default
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in the experiments.

Routing algorithms

As already mentioned in Section 5.1.2, we implement various methods to route vehicles.

All of them route vehicles according to the UE principle as it is the most fair and studied

solution. The congestion function used to compute the costs is that of Greenshields

(Eq. 4.13). Firstly, we reproduce from scratch the Self-aware algorithm proposed in [3].

In particular, we implement the pseudo-code at [3, p. 1524], eliminating the uncertainty

components as they are not relevant to us. It is important to notice a major typo in

the published paper at line 4 of the algorithm, where argmax should be replaced with

argmin. We also use SUMO’s implementation of dynamic UE (DUE) routing [15] and a

one-shot assignment approach2. Lastly, users can also be routed according to Dijkstra’s

shortest-paths algorithm [64], which sends users on the shortest distance paths, ignoring

congestion delays. All these routing algorithms are pluggable into our framework and

constitute an useful tool for users willing to benchmark their solutions.

Optimisation setup

Once the network GT has been created, the OD matrix has been generated, and the

routing algorithm has been chosen, the optimisation pipeline can be set up. For each

of the NT trips generated, we compute the (k + 1)-shortest paths between its origin

and destination in GT using Yen’s algorithm [65]. Then, the trip spanning tree GI is

created by using the shortest path for each trip. The remaining k paths for each trip

form the search space H, with |H| = NT k. In the experiments we present, paths from

H will be iteratively added to GI . After every addition, we reroute all the vehicles and

observe the new total travel time. If after an addition the total travel time increases due

to Braess’ paradox, the users are forced to ignore the added path. This way we are able

to guarantee the monotonicity of travel time with respect to path additions. For brevity,

in our experiments we will vary the constraint Np and leave Nv and Ne equal to infinity.

A graphical illustration of how path additions look in SUMO is shown in Figure 6.2.

Figure 6.2: Illustration of path additions in SUMO.

6.1.2 Routing algorithms comparison

We benchmark our implementation of Self-aware routing [3] against the other state-of-

the-art algorithms discussed in the experimental setup section. Results are shown in

2https://sumo.dlr.de/docs/Tools/Assign.html#one-shotpy
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Figure 6.3. The origin of the axes represents the trip spanning tree (Np = 0). Moving to

the right on the x axis, paths are incrementally added. In this scenario, added paths are

chosen randomly as we are not interested in evaluating the network optimisation, but

we want to evaluate the different routing performance on networks created randomly.

We evaluate two grid sizes: NG = 5, 10 and two congestion scenarios: NT = 3, 5, all

with NV = 250. We observe how Self-aware performs better3 than DUE [15], which

is currently the most accurate (and slowest) routing algorithm available with SUMO.

In particular, Self-aware is substantially faster. In the four scenarios presented, DUE

took on average 94.11s to perform a single routing assignment, while Self-aware took on

average 8.78s. Thus, DUE showed to be 1072% slower than Self-aware.
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Figure 6.3: Total travel time comparison of routing algorithms under random incremental
path additions in SUMO. The simulation parameters are shown on top of the plots.

6.1.3 Non-supermodularity

In this section, we briefly provide experimental confirmation of Braess’ paradox and

the absence of supermodularity in our framework. We consider a simple scenario with

NG = 5, NT = 1, NV = 50 and random path additions as in the previous case. The

results are shown in Figure 6.4.

In Fig. 6.4a we see that, if the travel time is not forced to be monotonic, some edge

additions can cause an increment in total travel time, as it is the case for addition

number 7. In Fig. 6.4b, we plot a more subtle concept: utilities. We do this by taking a

path p from our possible additions set and keeping it on a side. Then, the incremental

addition process is performed by adding paths from the set H\{p}. After every addition,

we compute the total travel time T on the resulting network and then add p to the

network and recompute the total travel time Tp. The utility of the addition of p at

3In terms of total travel time.
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(a) Braess’ paradox (b) Non-supermodularity

Figure 6.4: Experimental evidence of Braess’ paradox and non-supermodularity in a simple
scenario with NG = 5, NT = 1, NV = 50 and random path additions

each step is T − Tp, this can also be called benefit or return. Following the property of

supermodularity (Sec. 2.3), this utility should be diminishing (monotonic non-increasing)

for all the possible choices of p. In this experiment we show that this is not the case,

confirming experimentally the result of Sec. 4.2.5.

6.1.4 Greedy additions

In this section, we evaluate our solution to problem 5.3. We propose a greedy algorithm

that builds the set A iteratively. At each step, the algorithm evaluates the travel time

that would result after adding each of the remaining feasible4 paths individually to the

current network and chooses the one that results in the greatest decrease in total travel

time. We compare this solution with an algorithm that, at each step, picks a random

addition among the feasible4 ones. For the random algorithm, we plot the mean and

standard deviation of the results averaged between 10 different runs. The number of

samples is limited to 10 because of the high computational cost of each simulation step.

The routing algorithm we use is Self-aware, chosen based on the results from Section 6.1.2.

Due to the fact that the problem formulation has been introduced by us, we were not

able to use other existing solutions for further comparison.

In Figure 6.5 we can see the results. We evaluate three grid sizes: NG = 5, 10, 20

which correspond to the rows of the figure. In the columns, we vary the number of

trips: NT = 2, 5. The number of vehicles per trip is always fixed to NV = 100. These

parameter sets have been chosen to represent typical demands for a central city district.

On the x axis we can see the difference between the random and greedy performance

obtained by varying the Np constraint from 0 to |H|.
We can observe how, in all scenarios, the first additions are the most effective, leading

to the greatest decreases in travel time. However, this initial decrease is always followed

by a flattening point, where additions start to consistently have very little impact. This

fact highlights a very important intuition: if infrastructure additions are chosen wisely,

just a few impactful network extensions are sufficient to obtain a near optimal solution.

This is clearly shown in the top right plot of Figure 6.5, where the first 4 greedy additions

are sufficient to match the performance of 10 random additions.

There is another important result, which may appear a little subtle. By forcing

monotonicity of total travel time in our addition process, we counteract Braess’ paradox.

4That satisfy the constraints.
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Figure 6.5: Total travel time comparison of greedy and random path additions in SUMO.
The black × marker shows the total travel time of the network containing all the additions
without going thorough the iterative process. Random results are averaged between 10 runs.
The simulation parameters are shown on top of the plots.

Let’s take as an example the bottom left plot of Figure 6.5. We can imagine that,

during the greedy process, additions number 9 and 10 may have had no impact or, worse,

negative impact. However, we do not see a spike like in Figure 6.4a, because we force the

vehicles not to use the path just added if it leads to worse performance. This process

has an important benefit: if we look at the networks when Np = 10 (all the paths in H
have been added) we can compute the total travel time, which is shown with a black

× marker. This time differs from the total travel time of greedy, which got to this full

network trough iterative additions. This is because, as we said, after every addition,

the greedy algorithm ignores paradox-inducing paths. The distance between the black

marker and the orange line represents the gained travel time. In Table 6.3 we show

this benefit in terms of relative percentage of improvement in total travel time for the 6

scenarios of Figure 6.5. This data hints to a correlation between improvement and grid

size, which could be interpreted as an increased likelihood of Braess’ paradoxes in bigger

networks.
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Table 6.3: Percentage of improvement in total travel time obtained through iterative greedy
additions instead of routing in the full network. The highest value is shown in bold.

NT = 2 NT = 5

NG = 5 0.62% 0.29%

NG = 10 0.91% 1.03%

NG = 20 3.60% 1.24%

6.2 Capacity reduction

In this section, we provide evaluation results for the capacity reduction network design

problem (Equation 5.4). This problem formulation is highly innovative, thus, no existing

solutions from the reviewed literature could be applied to it directly. For this reason,

this section does not aim to compare our solutions with other approaches, but simply

demonstrates empirically that significant total travel time improvements can be obtained

only through capacity reductions in real-world cities and transport networks. In fact,

comparison is ineffective even with a random baseline, as, reducing capacities randomly,

always leads to catastrophic results.

6.2.1 Experimental setup

Transport networks used

For our evaluation, we use seven transport networks contained in this traffic research

repository5. The repository contains detailed descriptions of each network. The networks

are imported into our macroscopic traffic simulator. Congestion is modeled using the

BPR delay function (Eq. 5.5). The networks are described in Table 6.4.

Table 6.4: Transport networks imported in our macroscopic traffic simulator.

Transport network Nodes Edges Trips

Braess [1] 4 5 1
Anaheim (USA) 416 914 1406
Barcelona (Spain) 930 2522 7922
Chicago (USA) 933 2950 142890
Eastern Massachusetts (USA) 74 258 5476
Sioux Falls (USA) 24 76 576
Winnipeg (Canada) 1040 2836 4345

Genetic algorithm setup

The parameters used for the GA have been chosen by hand tuning. In the experiments

we set nPOP = 10, nCARRY = 2, pCROSS = 0.9, pMUT = 0.3. The population is kept

small as, on big networks, solving the routing equilibrium for each individual becomes

computationally demanding.

5www.github.com/bstabler/TransportationNetworks
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Apart from the mutation function introduced in Section 5.3.2, which we call continuous

mutations, we introduce two other mutation formulations. The first one looks at modifying

the capacities between 0 and 1 in the following way:

ze =

1, if ze = 0

0, if ze = 1
(6.1)

We call this formulation discrete removals (Disc Rem) as it aligns with the Discrete

Network Design Problem [47], which looks at removing entire roads. The second one

aligns with the RL agent actions and allows capacities to mutate with discrete ∆u steps.

It is defined as:

ze = max(0,min(1, ze + ∆u(2Bern(0.5)− 1))) (6.2)

Where Bern(0.5) indicates a Bernoulli random variable that assumes value 0 or 1

with probability 0.5. We call this formulation discrete mutations (Disc Mut) as the

capacities can only mutate of discrete ∆u steps.

Reinforcement learning setup

The parameters used for the RL agent have also been chosen by hand tuning. They are

shown in Table 6.5. The episodes are stopped after 200 agent interactions or when the

agent degrades the original performance by more than 1%. The episode is also stopped

if the agent is able to obtain SO performance.

Table 6.5: Reinforcement learning parameters.

Training PPO Model

Batch 6000 ε 0.2 G 64

Minibatch 200 γ 0.995 Activation Tanh

SDG Iterations 20 λ 1.0

Workers 16 β 0.2

Learning rate 5e-5 c2 0.001

Optimisation setup

The optimisation always starts from the full network, with y = u. On this full network,

we calculate the total travel time of the users for both UE and SO routing. We denote

the UE total travel time as the original time, as it is our starting point. We denote

the SO total travel time as the optimal time. Note that optimal does not refer to the

travel time of the optimal solution to our task, but it constitutes a lower bound6 to that

value. This is because we are trying to push the UE time of a capacity decreased network

towards the SO time of the original network, but we do not have guarantees that this

value can be reached, so the optimal is a lower bound on the time of the optimal solution.

To evaluate our solutions, we use the absolute improvement metric. Which is calculated

as the percentage of improvement in total travel time form the original time.

6Lower bound in terms of travel time, the optimal solution to the task can thus be at most as good
as the optimal value.
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6.2.2 Total travel time improvement

Braess’ network

To evaluate the correctness of our solutions, we test them on the Braess’ network, shown

in Figure 2.2b. For this network, we know that the optimal solution consists in removing

the central link. In our case, this corresponds to setting its capacity to 0 (ye = 0).

After 10 training iterations, the RL agent is able to learn the optimal policy, which

consists in reducing 10 times in a row the capacity of the central edge, until it becomes

0. The same is valid for all the GA formulations, which converge to the optimal in less

that 5 iterations.

Real-world networks

We then move to test on the six real-world networks.

Here, we observe that the RL approach fails to generalise and achieves near original

performance. The idea for the RL agent is to train on different trip demands in order to

be able to generalise to new demands for a given network. While on a small artificial

example, such as Braess’ network, the agent is able to achieve this task, on real-world

networks, it struggles. We have identified two possible causes for this result. Firstly,

Braess’ paradox is dependent on the demands. As we can see in the example by Braess’

(Sec. 2.2.2), the paradox happens with a demand of 6, and does not happen with lower

demands. This informs us that making the agent generalise on random demands could

mean to generalise to highly different paradox scenarios. Secondly, the state space of

the agent is actually the search space of a non-convex optimisation task, that grows

proportionally to the network size. Therefore, asking the agent to traverse this huge

space without guidance from an expert (which is common practice, but unfeasible in our

case as we do not have a expert) represents a hard RL problem and an open research

question. Due to time and computational constraints, we have not had the possibility

to investigate this direction further. In the conclusions (Chapter 7), we illustrate a few

interesting research problems motivated by our findings.

In the remaining of this section, we evaluate the performance of the GA algorithms.

In Figure 6.6, we can see an example of what a single GA run looks like on the Sioux Falls

network (the most used in traffic research). The algorithms are run for 100 iterations. As

we can see, no improvement is obtained by discrete edge removals. This means that the

travel time cannot be improved by removing entire edges or combination of edges. The

Braess’ paradox does not occur in his classical formulation. However, great improvements

can be obtained by decreasing capacities. Continuous GA obtains the best performance,

improving by 3% the original total travel time and getting very close to the SO on the

original network.

Having seen how a single run looks like, we then run each of our three GA formulations

for 20 times on each of the six real-world transport networks. Each run lasts for 100

iterations. As the GA is based on probability, running it 20 times is fundamental to get a

distribution over the obtained improvements. The results are shown in Figure 6.7. Here,

the discrete removal GA formulation is not plotted as it always achieves 0% improvement,

this is because, also in these networks, the classical Braess’ paradox does not occur
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Figure 6.6: Total travel time improvement for the three genetic algorithm formulations in a
single run on the Sioux Falls transport network.

and travel time cannot be improved by simple edge removals. However, we see that

the other GA formulations are able to achieve great improvements. This suggests that

a “continuous Braess’ paradox” indeed occurs and is addressable through our capacity

reductions.

The results show significant improvements in all networks, with almost optimal results

for three out of the six. We see that there is not an overall best solution among the

two plotted GA approaches, although the continuous formulation achieves overall better

results. The results are also summarised in Table 6.6, where additional information on

the running time is available. We also report the improvement of the best run among

the two algorithms as “GA Best” and the corresponding total travel time saved in hours

(first row) for each traffic hour (the flow time unit). As we can see, the results are really

promising, with up to 487 hours of total travel time saved in Chicago (more than 20

days).

Table 6.6: Genetic algorithm total travel time improvement results on six real-world transport
networks. For the distributions, we report mean ± standard deviation over 20 runs. The
highest mean improvement is shown in bold. The best improvement achieved for each network
is reported as GA Best and the corresponding total travel time hours saved per traffic hour are
reported as Most time saved.

Anaheim Barcelona Chicago Massachusetts Sioux Falls Winnipeg

Most time saved (h) 4.8 3.7 487.8 0.2 67.1 5.9

Optimal (%) 1.35 2.80 27.66 3.17 3.61 6.45
GA Best (%) 1.32 1.03 7.07 3.11 3.23 2.25
GA Cont (%) 1.30±0.01 0.83±0.11 3.13±0.48 3.06±0.05 3.09±0.12 1.96±0.15
GA Disc Mut (%) 1.25±0.02 0.77±0.11 4.33±1.46 3.04±0.01 2.49±0.15 1.73±0.11

Running time (min) 41.8±2.1 55.1±0.9 83.4±2.1 50.4±0.1 32.8±8.3 56.6±0.9
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Figure 6.7: Genetic algorithm total travel time improvement results on six real-world transport
networks. The violin plots show the distributions over 20 runs.

6.3 Summary

In this chapter, we have presented a series of evaluation experiments. Firstly, we have

tested and benchmarked our implementation of self-aware routing, showing that it

outperforms state-of-the-art solutions in a range of congestion scenarios. Secondly, we

have provided experimental evidence for some of the theoretical results of Chapter 4.

Thirdly, we have tested the two network design problems formulated in Chapter 5,

showing the great benefit achieved through our solutions. While the RL approach showed

that extreme care and research still has to be put into autonomous learning for solving

complex optimisation tasks, our genetic algorithm implementations achieve astonishing

results on six real-world large-scale transport networks. The relevance of these results

is highlighted by the fact that our approach only uses virtual infrastructure reductions,

without adding infrastructure or requiring physical modifications to the networks. This

makes it ready for immediate deployment on any transport network in the world.
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Chapter 7

Conclusions and future work

7.1 Contributions

In this dissertation we have highlighted the importance of transport networks in AVs’

routing and showed how we can effectively modify them to increase the global routing

performance while remaining fair to the single users. Our main contributions are:

• We proved via counterexample the non-supermodularity of total travel time when

paths are added to a transport network with users routed according to SO or UE.

Our results are confirmed experimentally through vehicle-level simulations. We also

provided and proved particular scenarios in which the property of supermodularity

holds.

• We formulated two innovative transport network design problems and framed them

in a bilevel optimisation framework. For the first one, we start from a trip spanning

tree and seek to optimally add paths to it in order to decrease the total travel time

while avoiding Braess’ paradox. For the second one, we start from a full transport

network and seek to optimally remove infrastructure through virtual road capacity

reductions in order to push self-interested vehicles to behave optimally.

• In order to solve the path addition problem, we implemented a greedy algorithm

and evaluated it on custom grid networks in the SUMO simulator. Our approach

is Braess’ paradox-aware and, thus, able to save significant total travel time.

• In order to solve the capacity reduction problem, we implemented a Genetic

Algorithm (GA) as well as a Reinforcement Learning (RL) environment and agent

and tested them on six real-world transport networks. Near optimal results are

achieved in three networks, with up to 487 hours of total travel time saved for each

traffic hour in Chicago.

• We built a macroscopic traffic simulator and implemented the Frank-Wolfe traffic

assignment solver to compute SO and UE. They are already being used by other

researchers as standalone products. We also implemented self-aware routing from

the literature and benchmarked it on the microscopic traffic simulator SUMO,

showing better than state-of-the-art performance.
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7.2 Key insights

• Our non-supermodularity results constitute a valuable insight for transport network

designers, as they show that an intuitive property of path additions to transport

networks does not hold.

• While the RL task suggests that additional investigation is required as it fails to

optimise large networks, the GA approach shows outstanding results, providing

empirical support for the non-intuitive concept that significant travel time can be

saved just by removing infrastructure. This is not obtained by removing entire

roads, as imagined by Braess and investigated in current research, but through

virtual continuous capacity reductions.

The promising results of the GA and the limitations shown by the data-driven

approach motivate many new interesting research directions, which we will discuss in the

next section.

7.3 Limitations and future work

An important aspect that is overlooked in this work is the dynamic and time-dependent

nature of trip demands. An extension to our research should address dynamic OD

matrices and thus provide time-varying network designs and capacity reductions. This

could help address the high traffic variability typical of real-world transport networks.

Data-driven solutions for optimisation problems constitute another promising research

direction. Recent extraordinary advancements in RL suggest that this paradigm could

have the potential to outperform traditional heuristic solutions. Showing this, was one of

the objectives of our project. However, our experiments show that it is very challenging

for a single agent to explore a large search space without any expert guidance. This has

led us to think about two future directions for this learning task:

• Given the encouraging results for one agent on small networks, we could tackle

the problem using multiple agents. A network district is assigned to each agent

with the task to optimise that fraction of the network. Agents could then act in a

decentralised manner by sharing local information with each other. Communication

and data aggregation could be enabled by organising the agents in a hierarchical

GNN.

• We believe that the main issue with RL in this task is the absence of expert

guidance. To overcome this, GA and RL could be fused to form an hybrid solution.

An example, could be using GA results as a starting point for the learning process,

leaving to the agent only the last near-optimal part of the search space to explore.

Drawing from the bio-inspiration of evolutionary computation, this last direction almost

assumes a philosophical interpretation. Our solutions leverage the ideas of evolution

(GA) and learning (RL). One could argue that these two components alone are what

characterises human intelligence. The idea of fusing them together constitutes a very

exciting and promising direction and could potentially be part of the next big step for

artificial intelligence.
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Appendix A

Proofs

A.1 Proof of Theorem 4.1

Proof. We can rewrite Λ(B) 6 Λ(A) as

min
x

 ∑
m∈M

∑
p∈Pm

B⊕I

cpxp

 6 min
x

 ∑
m∈M

∑
p∈Pm

A⊕I

cpxp

 (A.1)

If A ⊆ B there exists Y s.t. B = A∪Y . Therefore we can rewrite the above equation as

min
x

 ∑
m∈M

∑
p∈Pm

Y⊕A⊕I

cpxp

 6 min
x

 ∑
m∈M

∑
p∈Pm

A⊕I

cpxp

 (A.2)

We know that PY⊕A⊕I can be decomposed into its two components PA⊕I and PY|A⊕I .

Thus we can rewrite

min
x

 ∑
m∈M

∑
p∈Pm

A⊕I

cpxp +
∑
m∈M

∑
p∈Pm

Y|A⊕I

cpxp

 6
min
x

 ∑
m∈M

∑
p∈Pm

A⊕I

cpxp


(A.3)

If we turn our attention to the left side of the inequality and particularly to the second

term of the sum, we can set xp = 0, ∀p ∈ PmY|A⊕I , ∀m ∈ M; thus obtaining, in this

specific class of points

min
x

 ∑
m∈M

∑
p∈Pm

A⊕I

cpxp

 = min
x

 ∑
m∈M

∑
p∈Pm

A⊕I

cpxp

 (A.4)

This confirms our theorem as the minimum of a function in a specific class of points is

greater or equal to the minimum of the function in a general point. �

50



A.2 Proof of Theorem 4.5

Proof. We begin by recalling the definition of supermodularity. Given two subsets A
and B such that A ⊆ B ⊆ G′′ and x ∈ G′′ \ B, it holds that

Λ(A)− Λ(A ∪ {x}) > Λ(B)− Λ(B ∪ {x}) (A.5)

Knowing that A ⊆ B we can define B = Y ∪ A with A ∩ Y = ∅. This yields

Λ(A)− Λ(A ∪ {x}) > Λ(Y ∪ A)− Λ(Y ∪ A ∪ {x}) (A.6)

Which, according to the definition of Λ and to Equation 4.12, we can rewrite as:

dmin {cp|p ∈ PA⊕I} − dmin {cp|p ∈ Px⊕A⊕I} >

dmin {cp|p ∈ PY⊕A⊕I} − dmin {cp|p ∈ Px⊕Y⊕A⊕I}
(A.7)

The term d can be simplified knowing that d > 0. We proceed to consider the following

two cases:

Case 1: min {cp|p ∈ Px⊕A⊕I} > min {cp|p ∈ PY⊕A⊕I}. This implies that

min {cp|p ∈ PY⊕A⊕I} = min {cp|p ∈ Px⊕Y⊕A⊕I}

Equation A.7 becomes

min {cp|p ∈ PA⊕I} −min {cp|p ∈ Px⊕A⊕I} > 0 (A.8)

By Lemma 4.4 we know that PA⊕I ⊆ Px⊕A⊕I . Recalling that the minimum of a set is

always greater or equal than the minimum of one of its supersets, A.8 holds.

Case 2: min {cp|p ∈ Px⊕A⊕I} < min {cp|p ∈ PY⊕A⊕I}. This implies that

min {cp|p ∈ Px⊕A⊕I} = min {cp|p ∈ Px⊕Y⊕A⊕I}

Equation A.7 becomes

min {cp|p ∈ PA⊕I} > min {cp|p ∈ PY⊕A⊕I} (A.9)

By Lemma 4.4 we know that PA⊕I ⊆ PY⊕A⊕I . Recalling that the minimum of a set is

always greater or equal than the minimum of one of its supersets, A.9 holds. �

A.3 Proof of Lemma 4.6

Proof. From the definition of convexity we know that ce is convex if and only if for all

0 6 t 6 1 and all x1, x2 ∈ [0, ue],

ce(tx1 + (1− t)x2) 6 tce(x1) + (1− t)ce(x2) (A.10)
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By the definition of ce, we can rewrite

le

vmaxe

(
1− tx1+(1−t)x2

ue

) 6 tle

vmaxe

(
1− x1

ue

) +
(1− t)le

vmaxe

(
1− x2

ue

) (A.11)

Knowing that le > 0, vmaxe > 0, and ue > 0, we can apply a series of simplifications and

rewrites

ue
ue − tx1 − (1− t)x2

6
tue

ue − x1
+

(1− t)ue
ue − x2

(A.12)

1

ue − tx1 − (1− t)x2
6
t(ue − x2) + (1− t)(ue − x1)

(ue − x1)(ue − x2)
(A.13)

1

ue + t(x2 − x1)− x2
6
ue + t(x1 − x2)− x1
(ue − x1)(ue − x2)

(A.14)

Both denominators are greater or equal to zero. We can thus write

(ue − x1)(ue − x2) 6 (ue + t(x2 − x1)− x2)(ue + t(x1 − x2)− x1) (A.15)

0 6 t2(2x1x2 − x21 − x22) + t(x21 + x22) (A.16)

0 6 x21(1− t) + x22(1− t) + 2x1x2 (A.17)

All the three components on the right hand side are greater or equal to zero and thus

the equation holds. �

A.4 Proof of Theorem 4.16

Proof. As we have shown with Lemma 4.14 and Lemma 4.15 that ΛU and ΛO are

equivalent on H′′, we proceed to prove the theorem for ΛO, the result will be also valid

for ΛU . We begin by recalling the definition of supermodularity. Given two subsets A
and B such that A ⊆ B ⊆ H′′ and x ∈ H′′ \ B, it holds that

ΛO(A)− ΛO(A ∪ {x}) > ΛO(B)− ΛO(B ∪ {x}) (A.18)

Knowing that A ⊆ B we can define B = Y ∪ A with A ∩ Y = ∅. This yields

ΛO(A)− ΛO(A ∪ {x}) > ΛO(Y ∪ A)− ΛO(Y ∪ A ∪ {x}) (A.19)

We know that the trip spanning tree GI contains only one path |PI | = 1. We call

the number of paths in A and Y, a > 0 and y > 0 respectively. We also know that

|PA⊕I | = a+ 1. We fix n = a+ 1.

By Lemma 4.15 we know that Equation 4.22 holds, thus, using the definition of ΛO,

we can rewrite

dcp

(
d

n

)
− dcp

(
d

n+ 1

)
> dcp

(
d

n+ y

)
− dcp

(
d

n+ y + 1

)
(A.20)
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By expanding, we have

d
l

vmax
(
1− d

nu

) − d l

vmax
(

1− d
(n+1)u

) >
d

l

vmax
(

1− d
(n+m)u

) − d l

vmax
(

1− d
(n+m+1)u

) (A.21)

We know that d, l, vmax, u > 0. Thus, we can apply a series of rewrites

n

nu− d
− n+ 1

(n+ 1)u− d
>

n+m

(n+m)u− d
− n+m+ 1

(n+m+ 1)u− d
(A.22)

1

(nu− d)((n+ 1)u− d)
>

1

((n+m)u− d)((n+m+ 1)u− d)
(A.23)

Thanks to Property (4) of a trip spanning tree, we know that u > d, thus both denomi-

nators are non-negative and we have

((n+m)u− d)((n+m+ 1)u− d) > (nu− d)((n+ 1)u− d) (A.24)

mu(mu+ u+ 2nu− 2d) > 0 (A.25)

Which, by the fact that n > 1 and u > d, is always true. �
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