
Heterogeneous Multi-Robot Reinforcement Learning
Matteo Bettini

University of Cambridge
Cambridge, United Kingdom

mb2389@cl.cam.ac.uk

Ajay Shankar
University of Cambridge

Cambridge, United Kingdom
as3233@cl.cam.ac.uk

Amanda Prorok
University of Cambridge

Cambridge, United Kingdom
asp45@cl.cam.ac.uk

ABSTRACT
Cooperative multi-robot tasks can benefit from heterogeneity in
the robots’ physical and behavioral traits. In spite of this, tradi-
tional Multi-Agent Reinforcement Learning (MARL) frameworks
lack the ability to explicitly accommodate policy heterogeneity,
and typically constrain agents to share neural network parameters.
This enforced homogeneity limits application in cases where the
tasks benefit from heterogeneous behaviors. In this paper, we crys-
tallize the role of heterogeneity in MARL policies. Towards this
end, we introduce Heterogeneous Graph Neural Network Proximal
Policy Optimization (HetGPPO), a paradigm for training heteroge-
neous MARL policies that leverages a Graph Neural Network for
differentiable inter-agent communication. HetGPPO allows commu-
nicating agents to learn heterogeneous behaviors while enabling
fully decentralized training in partially observable environments.
We complement this with a taxonomical overview that exposes
more heterogeneity classes than previously identified. To motivate
the need for our model, we present a characterization of techniques
that homogeneous models can leverage to emulate heterogeneous
behavior, and show how this “apparent heterogeneity” is brittle in
real-world conditions. Through simulations and real-world experi-
ments, we show that: (i) when homogeneous methods fail due to
strong heterogeneous requirements, HetGPPO succeeds, and, (ii)
when homogeneous methods are able to learn apparently hetero-
geneous behaviors, HetGPPO achieves higher resilience to both
training and deployment noise.

KEYWORDS
Heterogeneity, Multi-agent reinforcement learning, Multi-robot
systems

1 INTRODUCTION
Multi-robot systems deployed to tackle complex cooperative tasks
can often benefit from heterogeneous physical and/or behavioral
traits to fulfill their mission. Such heterogeneous systems have been
leveraged in applications such as disaster response [37], collabora-
tive mapping [8], agriculture [26], and package transport [22]. How-
ever, synthesizing optimal decentralized policies for these tasks can
be computationally hard, and typically scales exponentially with
the number of agents [5]. While faster and scalable solutions exist,
such as metaheuristics [9], they lack in optimality. Multi-Agent
Reinforcement Learning (MARL) [61] can be used as a scalable ap-
proach to find near-optimal solutions to these problems. However,
MARL algorithms without inter-agent communication cannot be
easily applied to real-world robotic problems, where partial observ-
ability of individual agents is pervasive. Communication is key to
overcoming this partial observability, and to enable cooperation.

Figure 1: Taxonomy of heterogeneous multi-robot/agent systems.
Top: the three heterogeneity classes (P, B𝑠 , B𝑑). Bottom: the five
mutually exclusive heterogeneity subclasses. Every heterogeneous
system belongs to one of these subclasses.

Our work deals with heterogeneous multi-robot reinforcement learn-
ing, a paradigm located at the boundary of MARL (with inter-agent
communication) and heterogeneous multi-robot systems.

Most cooperative MARL works constrain agents to share pol-
icy neural network parameters to improve training sample effi-
ciency [24, 44, 53]. This causes the agents’ models to be identical
and, thus, homogeneous. While this is beneficial to speed-up train-
ing, it can prevent learning in scenarios that require heterogeneous
behavior. A classical method of overcoming this imposed homo-
geneity is to include a unique integer (e.g., the agent’s index) as
part of each agent’s observations [19, 24]. This allows the agents to
share the same policy while exhibiting apparently different behavior.
Despite its wide adoption, this solution has many drawbacks [12].

We are interested in learning truly heterogeneous decentralized
MARL policies. While it is common practice to learn heteroge-
neous policies when optimizing for different objectives [33], there
is a dearth of work in applying this paradigm to scenarios where
the objective is shared. Current solutions are few and tailored to
specific tasks, and, as such, do not address the broader study and
categorization of heterogeneity in MARL. Furthermore, they are
limited to noise-free videogame-like MARL benchmarks [30, 45],
without considering real-world multi-robot tasks with inter-agent
communication. Therefore, we need a framework that enables true
heterogeneity among communicating MARL agents and can learn
policies that run in a decentralized fashion for (real-world) hetero-
geneous multi-robot systems.

In this work, we introduce Heterogeneous Graph Neural Net-
work Proximal Policy Optimization (HetGPPO), a paradigm for
heterogeneous MARL that overcomes the aforementioned issues.
HetGPPO is a framework for training heterogeneous MARL policies

that leverages a Graph Neural Network (GNN) for differentiable
inter-agent communication. Our architecture enables learning for
heterogeneous agents while being conditioned only on local com-
munication and local observations. This enables to train HetGPPO
in a decentralized fashion, in-line with the Decentralized Training
Decentralized Execution (DTDE) paradigm [25].

We begin by presenting a taxonomy of heterogeneous systems in
Sec. 2. The purpose of this taxonomy is to classify such systems ac-
cording to the source of their heterogeneity. We use this taxonomy
in Sec. 3 to categorize related works in the domains of multi-robot
systems and MARL. Sec. 4 formulates the MARL problem tackled in
this paper. In Sec. 5, we introduce HetGPPO and its homogeneous
counterpart GPPO. To motivate the need for policy heterogeneity,
we distill and define the techniques that homogeneous models use
to emulate heterogeneous behavior (Sec. 6). Through example sce-
narios, we demonstrate how these technique work and how they
can prove brittle in real-world conditions when compared to truly
heterogeneous models. Finally, in Sec. 7, we present evaluations
of our framework both in simulated and real-world multi-robot
cooperative scenarios. These show that: (i) when homogeneous
methods fail due to strong heterogeneous requirements, HetGPPO
succeeds, and, (ii) when homogeneous methods are able to learn
apparently heterogeneous behaviors, HetGPPO achieves higher
resilience to both training and deployment noise. Furthermore, our
real-robot experiments demonstrate how heterogeneous policies
are intrinsically more resilient to real-world conditions.

In this paper, we demonstrate the power of heterogeneous MARL
applied to real-world multi-robot systems. We claim the following
key contributions:

(1) A taxonomy of heterogeneous systems that jointly catego-
rizes research in the multi-robot and multi-agent domains;

(2) A discourse on behavioral typing techniques that homoge-
neous models rely on to emulate heterogeneous behavior,
with empirical evidence for their brittleness in deployment;

(3) HetGPPO, a MARL model able to learn heterogeneous com-
municating policies in a decentralized fashion; and,

(4) Detailed evaluations of the performance and resilience of
heterogeneous policies compared to homogeneous ones in
several cooperative multi-robot tasks, both through simula-
tions and real-world experiments.

2 TAXONOMY OF HETEROGENEOUS SYSTEMS
In spite of a substantial body of work attempting to stimulate
research on heterogeneous systems (see [1] and the references
therein), the robotics and learning community still lacks a shared
and structured taxonomy of heterogeneous systems. To properly
characterize the related works in the heterogeneity (diversity) do-
main, we introduce a taxonomy of heterogeneous systems, shown
in Fig. 1. According to our taxonomy, system heterogeneity is cate-
gorized in two classes: Physical (P) and Behavioral (B).

A team is considered physically (P) heterogeneous when at least
one of its components (i.e., agents, robots) differs from the others
in terms of hardware or physical constraints. That is, it might have
different sensors, actuators, motion constraints, etc. These physical
differences might lead to different capabilities. For example, a small
drone might be able to fly and move aggressively, but likely has

shorter battery life than a big and slow ground robot. This type of
heterogeneity can lead to different observation and action spaces
in the context of learning, for example when robots are equipped
with different sensors or actuators.

A team is considered behaviorally (B) heterogeneous when at
least one of its components differs from the others in terms of soft-
ware or behavioral model. That is, two behaviorally heterogeneous
agents can produce distinct policy outputs when observing the
same input. For example, two physically identical drones might
cooperate to monitor a site: here, one drone can survey from far
away and direct the other to areas that need closer inspection. Be-
havioral heterogeneity is divided in two: Same objective (B𝑠) and
Different objective (B𝑑). In B𝑠 heterogeneous systems, agents opti-
mize the same objective function through heterogeneous behavior.
In MARL, this means that they share the same (global or local)
reward function. B𝑠 heterogeneous systems usually represent co-
operative settings [11]. However, they could also model adversarial
scenarios where agents with the same objective compete for lim-
ited resources [7]. In B𝑑 heterogeneous systems, agents optimize
different objective functions through heterogeneous behavior. In
MARL, this means that they have different local reward functions
or a global reward deriving from the composition of such local func-
tions. B𝑑 heterogeneous systems usually represent non-cooperative
or adversarial settings [33]. However, they could also model coop-
erative scenarios where agents optimize different sub-functions for
a higher-order task [12]. For example, in cooperative search and
rescue scenarios, one robot might only be tasked to remove debris,
while the others are tasked with the search in an uncluttered space.

Physical and behavioral heterogeneity are not mutually exclu-
sive. Thus, the three heterogeneity classes introduced (P, B𝑠 , B𝑑)
delineate five heterogeneity subclasses that a system can belong to:

• P \ B: Agents are physically different but share the same
behavioral model.

• P ∩ B𝑑 : Agents are physically different and differ in behav-
ioral models and objectives.

• P ∩ B𝑠 : Agents are physically different and differ in behav-
ioral models, but share the same objective.

• B𝑠 \ P: Agents are physically identical and share the same
objective but differ in behavioral models.

• B𝑑 \ P: Agents are physically identical but differ in behav-
ioral models and objectives.

While this taxonomy is concerned with classifying heteroge-
neous systems, it does not attempt to measure the degree of het-
erogeneity. Furthermore, it represents a high-level classification
and does not consider dynamic P heterogeneity, such as different
battery levels or hardware deterioration [50].

3 RELATED WORK
In this section, we review the current state of the art in the area of
heterogeneous multi-robot/agent systems. We classify the related
works according to our taxonomy in Tab. 1.

3.1 Heterogeneity in multi-robot systems
The core literature on heterogeneous robotics has generally fo-
cused on developing coordination algorithms that leverage the
physical heterogeneity of a team to their advantage. Therefore,

Table 1: Related work in heterogeneous multi-robot/agent systems
classified according to our taxonomy of Sec. 2.

Heterogeneity class Multi-robot systems MARL
P \ B [8] [55],[54]

P ∩ B𝑑 [37] [33],[12]

P ∩ B𝑠

[17],[40],[18],[36],[39],
[43],[42],[46],[28],[34],

[35],[10],[14]
[49]

B𝑠 \ P [1],[4],[2],[3],[31],
[52],[56] [57],[11],[58]

B𝑑 \ P [23],[47] [33],[12]

these works fall in the P ∩ B𝑠 class. Such diversity can manifest
itself in the form of different sensor ranges [42], diverse sensing ca-
pabilities [46], or different maximum speeds [28]. These differences
can then be exploited in a variety of problems such as multi-robot
coverage [28, 42, 46] and heterogeneous task assignment [40, 43],
with resilient formulations that can handle uncertainties in robot
capabilities [17] or the environment [18, 36, 39]. Sensor heterogene-
ity has also received attention in the context of active sampling and
mapping [34, 35], where heterogeneous computational resources
can impact task execution [10]. Lastly, P ∩ B𝑠 diversity has also
been investigated in more complex problems such as heterogeneous
trajectory planning [14].

Interestingly, such physical diversity without behavioral diver-
sity (P \B) can often represent a constraint for the problem. Works
in this heterogeneity class try to behaviorally reconcile the physical
heterogeneity of robots in order to apply homogeneous solutions
to the problem at hand. Heterogeneous multi-robot SLAM is an
example application where scans coming from different robots,
equipped with diverse sensors, need to be matched in order to build
a homogeneous shared map [8].

Behavioral heterogeneity for physically identical robots is a less
explored but promising research direction [1]. Works in this area
mostly tackle cooperative problems, leveraging B𝑠 \ P heterogene-
ity. Early research by Balch [2, 3] and Li et al. [31] focuses on
learning behavioral specialization for multi-robot teams using RL.
Game-theoretic autonomous racing [52, 56] constitutes an adver-
sarial setting of B𝑠 \ P heterogeneity. Note that game-theoretic
controllers do not present heterogeneous behavior when all players
use the symmetric Nash equilibrium strategy [38]. However, het-
erogeneity emerges when some robots in the team use traditional
model predictive controllers.

Conversely, heterogeneous behavior with different objectives
(B𝑑) has also been analyzed for cooperative robotic tasks, for in-
stance, by dividing a global task into sub-tasks for groups of iden-
tical robots (B𝑑 \ P) [23, 47]. When the robots additionally have
physical differences between sub-groups, these differences can be
leveraged to tackle complex multi-robot tasks, such as post-disaster
collaborative mapping [37], resulting in P ∩ B𝑑 heterogeneity.

All the works discussed in this subsection focus on a given het-
erogeneity class and problem, and develop a targeted solution for
that setting. To a large extent, the approaches leverage conven-
tional control theoretical methods. Our work, in contrast, proposes

a learning-based framework to synthesize communicating multi-
agent/robot policies, and can be applied to any heterogeneity class.

3.2 Heterogeneity in MARL
MARL has recently gained increasing traction as an effective tech-
nique to tackle multi-robot problems [61]. Using MARL, it is pos-
sible to synthesize efficient decentralized multi-agent controllers
for hard coordination problems [5]. Homogeneous policies (that
share parameters) for physically identical agents are abundant in
MARL [20, 24, 29, 44, 53] and constitute the core of the research liter-
ature. In an attempt to emulate heterogeneous behavior, a common
practice is to augment each agent’s observation space with a unique
index that represents the agent’s type [19, 24]. In this case, agents
share the same homogeneous multimodal policy, conditioned on
a unique constant index. We define and discuss in depth the lim-
itations of this approach in Sec. 6. P \ B heterogeneity in MARL
focuses on leveraging the power of parameter sharing and homo-
geneous training for physically different agents. This is achieved
by mapping heterogeneous observation spaces into homogeneous
fixed-length encodings [55], or by padding and including the agent
index into observations [54].

The majority of heterogeneous MARL literature falls in the B
heterogeneity class. Different behavioral roles for physically iden-
tical agents can be learned through various techniques, such as
conditioning agents’ policies on a latent representation [57], de-
composing and clustering action spaces [58], or by an intrinsic
reward that maximizes the mutual information between the agent’s
trajectory and its role [11]. All the aforementioned works consider
physically identical agents with the same objective, thus leveraging
B𝑠 \ P heterogeneity. Furthermore, they do not use inter-agent
communication, and hence their application to highly partially
observable coordination problems is limited. When considering
physically different robots, heterogeneous action or observation
spaces have to be taken into account. Such P ∩ B𝑠 heterogeneity
with communicating agents can be modeled, for instance, by an ad-
hoc GNN layer for each physically different robot type [49]. While
this may be suitable for some tasks where robot types are known
beforehand, it prevents physically identical agents from learning
heterogeneous behavior.

Behavioral heterogeneity with different objectives (B𝑑) emerges
due to different agent reward functions, as discussed in Sec. 2. MAD-
DPG [33] uses this paradigm in a centralized training approach to
learn individual (not shared) actors and critics. They test their ap-
proach in mixed cooperative-competitive tasks. In these tasks, both
physically identical and physically different agents (i.e., different
maximum speeds) are considered. Thus, MADDPG leverages het-
erogeneity classes B𝑑 \ P and P ∩ B𝑑 . The same heterogeneity
classes are studied in [12], which proposes to use parameter shar-
ing among sub-groups of agents which are physically identical
and share the same reward function. This approach, however, pre-
vents physically identical agents with the same objective to employ
different behavioral roles to solve a task.

Most works discussed in this section propose solutions to prob-
lems that sit exclusively within one given heterogeneity subclass.
While a selected few could be applied to multiple classes [11, 33, 57],
they leverage centralized training methods and do not consider

inter-agent communication. These are two key features needed to
make MARL suitable for multi-robot problems.

4 PROBLEM FORMULATION
We now formulate the multi-robot MARL problem tackled in this
work. To do so, we first introduce the multi-agent extension of a
Partially Observable Markov Decision Process (POMDP) [27].

Partially Observable Markov Games. A Partially Observable
Markov Game (POMG) is defined as a tuple〈V,S,O, {𝜎𝑖 }𝑖∈V ,A, {R𝑖 }𝑖∈V ,T , 𝛾

〉
,

where V = {1, . . . , 𝑛} denotes the set of agents, S is the state space,
shared by all agents, and, O ≡ O1 × . . . × O𝑛 and A ≡ A1 × . . . ×
A𝑛 are the observation and action spaces, with O𝑖 ⊆ S, ∀𝑖 ∈
V . Further, {𝜎𝑖 }𝑖∈V and {R𝑖 }𝑖∈V are the agent observation and
reward functions1, such that 𝜎𝑖 : S ↦→ O𝑖 , and, R𝑖 : S×A×S ↦→ R.
T is the stochastic state transition model, defined as T : S × A ×
S ↦→ [0, 1]. Lastly, 𝛾 is the discount factor.

We structure the agents in a communication graph G = (V, E).
Nodes 𝑖 ∈ V represent agents and edges 𝑒𝑖 𝑗 ∈ E represent commu-
nication links. The set of edges is dependent of the maximum agent
communication range and changes over time. The communication
neighborhood of each agent is defined as N𝑖 ≡ {𝑣 𝑗 | 𝑒𝑖 𝑗 ∈ E}.

At each timestep 𝑡 , each agent 𝑖 gets an observation 𝑜𝑡
𝑖
= 𝜎𝑖 (𝑠𝑡) ∈

O𝑖 that is a portion of the global state 𝑠𝑡 ∈ S. This is communicated
to the neighboring agents N𝑡

𝑖
. A stochastic policy 𝜋𝑖 uses this in-

formation to compute an action 𝑎𝑡
𝑖
∼ 𝜋𝑖 (·|𝑜𝑡N𝑖

). The agents’ actions
a𝑡 = (𝑎𝑡1, . . . , 𝑎𝑡𝑛) ∈ A, along with the current state 𝑠𝑡 , are then used
in the transition model to obtain the next state 𝑠𝑡+1 ∼ T (·|𝑠𝑡 , a𝑡) .
A reward 𝑟𝑡

𝑖
= R𝑖

(
𝑠𝑡 , a𝑡 , 𝑠𝑡+1) is then fed to agent 𝑖 .

The goal of each agent is to maximize the sum of discounted
rewards 𝑣𝑡

𝑖
=

∑𝑇
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘
𝑖

over an episode with horizon 𝑇 , po-
tentially infinite2. 𝑣𝑡

𝑖
is called the return. Each agent has a value

function 𝑉𝑖 (𝑜N𝑖
) = E𝜋𝑖

[
𝑣𝑡
𝑖

��𝑜𝑡N𝑖
= 𝑜N𝑖

]
, which represents the ex-

pected return starting from observations 𝑜N𝑖
and following policy

𝜋𝑖 . This function estimates the “goodness” of an observation. In this
work, we use the Proximal Policy Optimization (PPO) actor-critic
algorithm [48], which approximates the policy (actor) and the value
function (critic) using neural networks and a constrained policy
gradient update.

Problem. Learn heterogeneous policies 𝜋𝑖 (𝑜𝑡N𝑖
;𝜃𝑖) and critics

𝑉𝑖 (𝑜N𝑖
;𝜃𝑖) conditioned on the neural network parameters 𝜃𝑖 , dif-

ferent for each agent. The observations 𝑜𝑡N𝑖
from the agent’s neigh-

borhood N𝑖 are obtained through a differentiable communication
channel, making learning inherently decentralizable.

Our objective is to crystallize the role of heterogeneity in MARL
policies. Towards this end, we develop a model that addresses
the problem description above, motivating it with an empirically-
backed discourse on the shortcomings of homogeneous policies
(and the behavioral typing techniques that they rely on).

1Note that, while we formulate our problem with local agent reward functions R𝑖 (to
enable learning of B𝑑 heterogeneity), our experiments all present a global reward
function R = R1 = . . . = R𝑛 which cannot be decomposed into local sub-functions.
This reward encodes a global cooperative objective, leading to B𝑠 heterogeneity.
2𝛾𝑘 indicates 𝛾 to the power of 𝑘 , and not the timestep superscript.

5 HETEROGENEOUS MODEL
We introduce the two MARL models that constitute the methodol-
ogy leveraged in this work: Graph Neural Network Proximal Policy
Optimization (GPPO) and its heterogeneous counterpart, HetGPPO.

GPPO builds upon Independent Proximal Policy Optimization
(IPPO) [13]. In IPPO, each agent learns a local critic𝑉𝑖 (𝑜𝑖) and actor
𝜋𝑖 (𝑜𝑖), conditioned only on its own observations. Conditioning the
critic only on local observations and not on the full state 𝑠 introduces
non-stationarity during training. This results in other agents being
considered as part of the environment and not explicitly modeled
in the critic. While this can be problematic, it has the advantage
of not requiring global information during training. Furthermore,
IPPO has been shown to outperform many fully-observable critic
models on state-of-the-art MARL benchmarks [13].

GPPO overcomes the limitations of IPPO while maintaining its
benefits. It uses a GNN communication layer, allowing agents to
share information in neighborhoods to coordinate and overcome
partial observability. Thanks to this, the GPPO critic𝑉𝑖 (𝑜N𝑖

) and ac-
tor 𝜋𝑖 (𝑜N𝑖

) are conditioned on local communication neighborhood
observations 𝑜N𝑖

. This helps overcome non-stationarity, while re-
quiring only local information and communication during training.

The GPPO model is illustrated in Fig. 2. At each timestep, each
agent 𝑖 observes the environment, collecting the observations 𝑜𝑖 .
These observations contain absolute geometrical features, such as
the agent position p𝑖 ∈ R2. The non-absolute features are passed
through a Multi Layer Perceptron (MLP) encoder, obtaining an
embedding 𝑧𝑖 . The absolute position and the agent velocity v𝑖 ∈ R2

are used to compute edge features 𝑒𝑖 𝑗 , which are relative features of
agents 𝑖 and 𝑗 . In this work, we use the relative position p𝑖 𝑗 = p𝑖−p𝑗

and relative velocity v𝑖 𝑗 = v𝑖 − v𝑗 as edge features 𝑒𝑖 𝑗 = p𝑖 𝑗 | | v𝑖 𝑗 ,
where | | indicates the concatenation operation. This process ensures
that GNN outputs are invariant to translations in R2 (i.e., the same
output is obtained if all the team is translated in space), helping
the model generalize [21]. The edge features 𝑒𝑖 𝑗 and the agent
embedding 𝑧𝑖 are then used in the message-passing GNN kernel:

ℎ𝑖 = 𝜓𝜃𝑖
(𝑧𝑖) +

⊕
𝑗∈N𝑖

𝜙𝜃𝑖
(𝑧 𝑗 | | 𝑒𝑖 𝑗) .

Here, 𝜓𝜃𝑖
and 𝜙𝜃𝑖

are two MLPs, parameterized by the agent
parameters 𝜃𝑖3, and

⊕
is an aggregation operator (e.g., sum). The

GNN output ℎ𝑖 is then fed to two different MLP decoders, which
output the action 𝑎𝑖 ∼ 𝜋𝑖 (·|𝑜N𝑖

) and the value 𝑉𝑖 (𝑜N𝑖
). Similar to

IPPO, GPPO uses parameter sharing to improve sample efficiency.
Thus 𝜃1 = . . . = 𝜃𝑛 . Parameter sharing allows agents to benefit from
collective experiences and thereby reduces training time. On the
other hand, it enforces centralized training and constraints agents’
policies to be identical (i.e., homogeneous).

HetGPPO, removes the parameter sharing constraint of GPPO,
thus allowing agent policies to diverge, 𝜃1 ≠ . . . ≠ 𝜃𝑛 . However,
the impact of not sharing parameters in the context of GNN com-
munications is profound: the permutation equivariance property
of GNNs [59] does not hold, since the agents now learn different
message encoding and interpreting strategies. This results in the
GNN having to learn a different team output for all the possible
permutations of a given team input, instead of learning only one
3With 𝜃𝑖 we indicate the parameters for all the neural network layers of agent 𝑖 .

Figure 2: Architecture of GPPO and HetGPPO: MARL models with
communicating agents. Each agent passes its observation through an
encoder, then aggregates messages received from its neighbors using
a translation-invariant message-passing GNN and updates its hidden
state ℎ𝑖 . ℎ𝑖 is then used as input to the policy and value decoders
(Dec). HetGPPO is equivalent to GPPO without parameter sharing.

output. This can lead to decreases in generalization power and
sample efficiency. On the other hand, gradients are backpropagated
through communication neighborhoods, enabling agents to learn
collectively from local interactions.

The structure of HetGPPO, shown in Fig. 2, allows for Decentral-
ized Training Decentralized Execution (DTDE). This is thanks to the
fact that GPPO critics are not conditioned on global information.
While GPPO uses parameter sharing, HetGPPO removes this need,
thus enabling training in any environment where just inter-agent
communication is possible. We note that, by implementing an ad-
hoc mechanism to achieve decentralized parameter sharing (e.g.,
through distributed optimization [60]), GPPO could be trained in a
decentralized fashion as well.

We implement HetGPPO and GPPO in PyTorch [41] and employ
the RLlib [32] framework for training. The code is available here4.
Simulations are executed in custom created scenarios using the
VMAS simulator [6], available at this link5.

6 BEHAVIORAL TYPING
HetGPPO, introduced above, allows us to learn truly heterogeneous
policies. Counter-intuitively, it is also possible to learn apparently
heterogeneous behavior with homogeneous models like GPPO. This
allows agents to emulate heterogeneous behavior while leveraging
the sample efficiency benefits of parameter sharing. A shared model
can encompass different behavioral types which are activated by
particular combinations of the input observations. For example, if
two robots are transporting a package towards a destination, the
model can identify if an agent is in the back (further from the goal)
and assign it a different behavioral type from that of the agent in
the front. The input observations provide the conditions for the
model to assign behavioral types to the agents.

We refer to this identification process as typing. Fig. 3 depicts a
classification of behavioral typing techniques which we describe

4https://github.com/proroklab/HetGPPO
5https://github.com/proroklab/VectorizedMultiAgentSimulator

Behavioral typing

Explicit (6.1) Inferred

Physically heterogeneous (6.2) Physically identical (6.3)

Figure 3: Different forms of behavioral typing. Homogeneous poli-
cies use typing to differentiate among agents and emulate heteroge-
neous behavior.

in the following subsections. Note that behavioral types lie in a
continuous behavioral space (and are not part of a discrete set) [2].

6.1 Explicit behavioral typing
The most popular form of behavioral typing consists in feeding
the index 𝑖 of the agent explicitly as part of the observation. This
practice has been used extensively in the MARL literature [12, 19,
24, 54]. However, it requires the model to learn a multimodal policy,
which switches modes based on this integer index. This can lead to
discontinuities in the agents’ policy and has been shown to perform
sub-optimally [12].

Definition 6.1 (Explicit behavioral typing). Explicit behavioral
typing occurs when a shared decentralized MARL policy is able to
type agents based on a constant value concatenated to the input,
different for each agent.

When no explicit index is available, a shared policy may still
be able to emulate heterogeneous behavior [15]. We refer to this
phenomenon as inferred behavioral typing. Inferred typing can
occur for both physically heterogeneous and physically identical
agents.

6.2 Inferred behavioral typing for physically
heterogeneous agents

We first present a case study of inferred behavioral typing for agents
that are physically heterogeneous.

Definition 6.2 (Inferred behavioral typing for physically heteroge-
neous agents). Inferred behavioral typing for physically heteroge-
neous agents occurs when a shared decentralized MARL policy is
able to type P heterogeneous agents through their observations.

Scenario A (Fig. 4). Consider two robots with different masses,
𝑚1 > 𝑚2, located in a 1D workspace at random positions. The
robots observe their own position p𝑖 ∈ R and velocity v𝑖 ∈ R and
share them via communication. Their action is a force f𝑖 ∈ R. They
are rewarded collectively to maximize the maximum speed in the
team while minimizing the energy consumed. The optimal policy
in this case is, clearly, for the robot with the higher mass to not
move at all, while the lighter robot moves at the maximum speed.
Evidently these behaviors are heterogeneous, since f1 ≠ f2 when
both agents receive the same observations.

We train the agents in this scenario using GPPO and HetGPPO.
Fig. 4 shows a graphical representation of the learned policies of
each model. In these plots, an arrow represents the team action
vector ®f (®v) = [f1 (®v), f2 (®v)] as a function of the observation ®v =

https://github.com/proroklab/HetGPPO
https://github.com/proroklab/VectorizedMultiAgentSimulator
https://github.com/proroklab/HetGPPO
https://github.com/proroklab/VectorizedMultiAgentSimulator

−0.4 −0.2 0.0 0.2 0.4
Agent 1: v1

−0.4

−0.2

0.0

0.2

0.4

(a) Heterogeneous

Action policy
Action rollout

−0.4 −0.2 0.0 0.2 0.4
Agent 1: v1

−0.4

−0.2

0.0

0.2

0.4

(b) Homogeneous

−0.4 −0.2 0.0 0.2 0.4
Agent 1: v1

−0.4

−0.2

0.0

0.2

0.4

(c) Heterogeneous with noise

−0.4 −0.2 0.0 0.2 0.4
Agent 1: v1

−0.4

−0.2

0.0

0.2

0.4

(d) Homogenous with noise

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ag
en

t2
:v

2

Figure 4: Policies learned for Scenario A represented as vector fields (gray) and rollouts in the environment (red). (a) and (b) are not subject to
deployment noise. (c) and (d) are subject to ±0.3 uniform noise on the observations. In these plots, an arrow represents the team action vector
®f (®v) = [f1 (®v), f2 (®v)] as a function of the observation ®v = [v1, v2]. The rollouts always start in the origin (®v = [0, 0]). We can observe how the
vector field representing the homogeneous policies is forced to be invariant to permutations of the two inputs and thus is symmetric along
v1 = v2. This causes it to become brittle in the presence of noise (d), which makes the observations fall in the wrong part of the plane where the
symmetry enforces a suboptimal policy (horizontal arrows).

[v1, v2]. A vertical arrow at [0, 0] indicates that, when the agents
are both still, agent 1 wants to stay still while agent 2 wants to
increase its velocity. We plot the policy mean action6 for every
observation pair with a gray vector field, and show a rollout of the
policy in red. In Fig. 4a, we observe how HetGPPO is able to learn
the optimal policy, which is not dependent on any observation.
Thanks to physically inferred typing, GPPO (Fig. 4b) is surprisingly
also able to learn a policy that grants optimal rollouts. We observe
how, due to homogeneity, the GPPO policy is forced to be symmetric
about the v1 = v2 axis. Thus, when the GPPO agents are spawned
at [0, 0], they forcibly take the same action of increasing their
velocities. Due to their P differences, however, this action produces
different velocities, making the rollout quickly diverge from the
symmetry and thus producing optimal behavior. The fact that a
physical difference (i.e., different agent mass) produces different
observations (i.e., different agent speed) for the same action, enables
the homogeneous model to learn an optimal policy with apparent
heterogeneous behavior – an example of inferred behavioral typing
for physically heterogeneous agents.

Physically inferred typing proves to be a brittle solution. When
additive uniform observation noise is injected during rollouts, we
observe how the HetGPPO rollout (Fig. 4c) is not impacted at all,
while the GPPO rollout (Fig. 4d) occasionally falls on the other side
of the diagonal, producing the symmetrical opposite of the optimal
behavior, and causing the heavy agent to move (horizontal arrows).

6.3 Inferred behavioral typing for physically
identical agents

We now present a case study of inferred behavioral typing for
agents that are physically identical.

Definition 6.3 (Inferred behavioral typing for physically identical
agents). Inferred behavioral typing for physically identical agents

6The PPO policy is stochastic and outputs a distribution over f𝑖 .

(a) Scenario

0 50 100 150 200 250 300

0

500

1,000

Training iteration

Ep
iso

de
re

w
ar

d
m

ea
n

HetGPPO
GPPO

(b) Training performance

Figure 5: Scenario B. (a): The setup with two robots (bigger circles) on
opposite sides of a corridor which need to give way to each other to
reach their goals (smaller circles). (b) The training curve for Scenario
B, showing that, while the heterogeneous model is able to solve
the scenario immediately, homogeneous models need around 300
training iterations to learn inferred behavioral typing for physically
identical agents. We plot the mean and standard deviation of 10
different runs. Each iteration is performed over 200 episodes.

occurs when a shared decentralized MARL policy is able to type
physically identical agents through their observations.

Scenario B (Fig. 5). Consider now two physically identical
robots, initialized at different ends of a narrow corridor, depicted
in Fig. 5a. Each robot is positioned in front of the other’s goal. The
corridor is wide enough to fit only one robot, but contains two
robot-sized recesses in the center. The robots observe and commu-
nicate their respective 2D positions and velocities, and are tasked
with reaching their goals without colliding. Thus, the task can only
be solved when one robot gives way to the other.

Again, we train the agents with both GPPO and HetGPPO in
this scenario. By looking at the training reward plot in Fig. 5b,

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Uniform observation noise

Re
w

ar
d

HetGPPO
GPPO

(a) Scenario A

0 0.5 1 1.5 2

−0.2
0

0.2
0.4
0.6
0.8

1
1.2

Uniform observation noise

Re
w

ar
d

(b) Scenario B

Figure 6: Performance of homogeneous and heterogeneous models
in the presence of deployment noise on the two inferred typing
scenarios. Reward is normalized between 0 and 1. Uniform noise is
applied to all observations and it is in the same units as the observa-
tions. We report the mean and standard deviation of the normalized
reward on 100 runs for 50 noise values between 0 and 2.

we can see that both models are able to learn the correct behav-
ior (reward > 700). GPPO leverages inferred typing for physically
identical agents and is able to assign the “give way” role dynam-
ically according to the relative position and velocity of the two
robots. However, we observe that learning behavioral typing takes
all 300 training iterations, while the heterogeneous model learns
the optimal solution with only 20 iterations.

6.4 Limitations of behavioral typing
Although homogeneous models can use behavioral typing to learn
apparently heterogeneous behavior, this does not prove to be a
reliable and scalable solution.

In [12] it is shown that the performance of explicit behavioral
typing degrades as a function of the number of types to be learned.
Furthermore, the authors empirically show that this performance
decrease is not related to the capacity of the shared homogeneous
model (i.e., the number of parameters).

Inferred indexing also proves to be a brittle solution. To char-
acterize this brittleness, we perform an evaluation by injecting
observation noise during execution. This is shown in Fig. 6. We
report the mean and standard deviation of the normalized reward
on 100 runs for 50 noise values between 0 and 2. As we can observe,
all models start with the optimal policy with a reward of 1 when
the noise is 0. As the noise increases, we observe how homoge-
neous models either almost immediately lose functionality (like for
Scenario B in Fig. 6b), or degrade in performance rapidly (like for
Scenario A in Fig. 6a). A heterogeneous policy, in contrast, is able
to tolerate higher magnitudes of noise, and, even in the difficult
corridor scenario, still manages to complete the task about 20% of
the time at high noise values.

7 EXPERIMENTAL EVALUATIONS
We now present some evaluations of the proposed models in simu-
lated and real environments.

Performance evaluation. We evaluate HetGPPO on a simu-
lated 2D task which requires heterogeneous behavior. The task is
shown in Fig. 7a. Here, two robots of different sizes (blue circles),

(a) Scenario

0 1,000 2,000 3,000

0

0.5

1

Training iteration

Su
cc

es
sr

at
e

HetGPPO
GPPO

(b) Training performance

Figure 7: Performance evaluation in the passage scenario with differ-
ently sized robots. Here, the homogeneous model is not able to per-
form inferred behavioral typing for physically heterogeneous agents
since P heterogeneity does not affect the robots’ observations. Thus,
only the heterogeneous model is able to solve the task. We plot the
mean and standard deviation success rate of 4 runs. Each iteration
is performed over 200 episodes of experience.

connected by a rigid linkage through two revolute joints, need to
cross a passage while keeping the linkage parallel to it and then
match the desired goal position (green circles) on the other side.
The passage is comprised of a bigger and a smaller gap, which are
spawned in a random position and order on the wall, but always
at the same distance between each other. The team is spawned in
a random order and position on the lower side with the linkage
always perpendicular to the passage. The goal is spawned horizon-
tally in a random position on the upper side. Each robot observes
and communicates its velocity, relative position to each gap, and
relative position to the goal center. The shaped global reward is
composed of two convex terms. Before the passage, the robots are
rewarded to keep the linkage parallel to the goal and to bring its
center to the center of the passage. After the passage, the robots
are rewarded for bringing it to the goal at the desired orientation.
Collisions are also penalized.

Fig. 7b shows training success rate (i.e., percentage of episodes
in each batch that complete the task). The heterogeneous model is
able to learn two behaviorally different policies: the bigger robot
passes through the bigger gap and the smaller robot through the
smaller gap, achieving the optimal solution. On the other hand, the
homogeneous model is not able to assign these two behavioral types
using inferred behavioral typing for physically heterogeneous agents,
since the P heterogeneity caused by different robot sizes does not
affect the robots’ observations. Agents with homogeneous policies
never manage to cross the passage, being deterred by unavoidable
collisions.

Resilience to training noise. As elucidated in Sec. 6, homoge-
neous models can learn heterogeneous behavior. In this subsection,
we evaluate the resilience of this paradigm in the presence of obser-
vation noise during training. We consider the task depicted in Fig. 8a.
This is the same as in Fig. 7a with the difference that the robots
are now physically identical, but the linkage has an asymmetric
mass (black circle) that causes a different type of P heterogeneity,
reflected in the velocity observations. The passage is a single gap,
positioned randomly on the wall. The agents need to cross it while

(a) Scenario

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Training observation noise

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sr

at
e

HetGPPO
GPPO

(b) Resilience to training noise

Figure 8: Resilience to uniform observation noise during training
in the passage scenario with asymmetric package. Here, the hetero-
geneous model is able to maintain higher performance as the noise
increases. We train the two models for 7 different noise values. For
each noise value, we report the mean and standard deviation of the
success rate after 1000 training iterations for 5 runs. Each training
iteration is performed over 200 episodes of experience.

keeping the linkage perpendicular to the wall and avoiding colli-
sions. The team and the goal are spawned in a random position,
order, and rotation on opposite sides of the passage.

In Fig. 8b we report the training success rate for different ob-
servation noise values. Thanks to inferred behavioral typing for
physically heterogeneous agents we see that both models solve the
task optimally when 0 noise is added. As noise increases, the hetero-
geneous model is able to maintain significantly better performance.
For example, with 0.2 observation noise, HetGPPO still achieves
more than 80% success rate, while GPPO is below 40%.

Real-world deployment. To demonstrate the resilience of het-
erogeneous policies, we deploy Scenario B (Sec. 6.3) to a real-world
setting. The setup of the task is shown in Fig. 9b and is the same
as in simulation. We use two holonomic RoboMaster S1 ground
robots [16] (Fig. 9a), each running a customized model-based con-
troller onboard [51]. We perform 10 runs for the trained HetGPPO
and GPPO models both in simulation (Fig. 9c) and in the real world
(Fig. 9d). As already discussed in Sec. 6.3, both the heterogeneous
and the homogeneous models are able to solve the scenario in simu-
lation, with the homogeneous model leveraging inferred behavioral
typing for physically identical agents. This is shown in Fig. 9c, where
all the runs of both models reach 100% task completion within 15s.
On the other hand, as seen in Fig. 9d, the performance of the ho-
mogeneous model is heavily impacted in the real world. This is
because, in this symmetric scenario, the homogeneous model can-
not type agents based on position only, and has to rely on velocity
observations to build the behavioral types. In practice, however,
real-world estimated velocities can be noisy due to factors such as
control/process delays and variability in the robot’s measurement
and motion models. Thus, relying on these observations makes
the homogeneous (memory-less) model susceptible to erroneously
switching the behavioral types dynamically (i.e., failing to distin-
guish if the robots are currently moving towards or away from the
center). This leads to the plotted rollouts, where robots alternate the
role of giving way to each other near the passage. Out of 10 runs,
only 5 are completed within 60s. The heterogeneous model, on the

(a) Robot (b) Scenario B (real world)

0 5 10
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

co
m

pl
et

io
n

HetGPPO
GPPO

(c) Simulation

0 10 20 30 40 50
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk

co
m

pl
et

io
n

(d) Real world

Figure 9: Real-world deployment of Scenario B (Fig. 5). We report 10
runs for each model both in simulation and in the real world. We
plot task completion (the scaled sum of the negative distances of
each robot from its goal) over time. While in simulation both models
are able to perform the task, real world imperfections make the ho-
mogeneous model dynamically switch between learned behavioral
types, leading to the robots switching positions multiple times near
the central area. This causes the zigzag behavior in (d) with certain
rollouts failing or taking over the maximum allocated time of 60s.

other hand, does not rely on behavioral typing and is not impacted
by the deployment noises, performing as well as in simulations.

8 CONCLUSION
In this paper, we introduced a new paradigm for learning hetero-
geneous policies in MARL. We motivated it with a categorization
of techniques that homogeneous models can use to emulate het-
erogeneous behavior and empirically demonstrated their limits.
Finally, we showed the benefits of policy heterogeneity for both
performance and resilience on multi-robot tasks in simulation and
in the real world. While we do not employ any methods to control
the degree of heterogeneity of the agents’ policies, we observe that
training is already a good heterogeneity regularizer. In other words,
if the system has heterogeneous requirements, HetGPPO will be
able to learn them, while, if the system benefits from homogeneous
policies, HetGPPO will learn the same policy as GPPO (with some
loss in sample efficiency). In future work, we are interested in de-
veloping mechanisms that measure and actively tune the degree
of policy heterogeneity in the team, allowing us to control the
trade-offs between sample efficiency (of homogeneous policies) and
resilience (of heterogeneous policies).

ACKNOWLEDGMENTS
This work was supported by ARL DCIST CRA W911NF-17-2-0181,
the European Research Council (ERC) Project 949940 (gAIa), and
in part by a gift from Arm.

REFERENCES
[1] Nora Ayanian. 2019. Dart: Diversity-enhanced autonomy in robot teams. The

International Journal of Robotics Research 38, 12-13 (2019), 1329–1337.
[2] Tucker Balch. 2000. Hierarchic social entropy: An information theoretic measure

of robot group diversity. Autonomous robots 8, 3 (2000), 209–238.
[3] Tucker Balch et al. 1997. Learning roles: Behavioral diversity in robot teams. In

AAAI Workshop on Multiagent Learning.
[4] Spring Berman, Adám Halász, Vijay Kumar, and Stephen Pratt. 2007. Bio-inspired

group behaviors for the deployment of a swarm of robots to multiple destinations.
In Proceedings 2007 IEEE international conference on robotics and automation. IEEE,
2318–2323.

[5] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002.
The complexity of decentralized control of Markov decision processes. Mathe-
matics of operations research 27, 4 (2002), 819–840.

[6] Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. 2022.
VMAS: A Vectorized Multi-Agent Simulator for Collective Robot Learning. The
16th International Symposium on Distributed Autonomous Robotic Systems (2022).

[7] Jan Blumenkamp and Amanda Prorok. 2021. The Emergence of Adversarial
Communication in Multi-Agent Reinforcement Learning. In Conference on Robot
Learning. PMLR, 1394–1414.

[8] Elizabeth R Boroson and Nora Ayanian. 2019. 3D keypoint repeatability for
heterogeneous multi-robot SLAM. In 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 6337–6343.

[9] Olli Bräysy and Michel Gendreau. 2005. Vehicle routing problem with time
windows, Part II: Metaheuristics. Transportation science 39, 1 (2005), 119–139.

[10] Praneel Chand and Dale A Carnegie. 2013. Mapping and exploration in a hierar-
chical heterogeneous multi-robot system using limited capability robots. Robotics
and autonomous Systems 61, 6 (2013), 565–579.

[11] Li Chenghao, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and
Chongjie Zhang. 2021. Celebrating diversity in shared multi-agent reinforcement
learning. Advances in Neural Information Processing Systems 34 (2021).

[12] Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V
Albrecht. 2021. Scaling multi-agent reinforcement learning with selective param-
eter sharing. In International Conference on Machine Learning. PMLR, 1989–1998.

[13] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviy-
chuk, Philip HS Torr, Mingfei Sun, and Shimon Whiteson. 2020. Is independent
learning all you need in the starcraft multi-agent challenge? arXiv preprint
arXiv:2011.09533 (2020).

[14] Mark Debord, Wolfgang Hönig, and Nora Ayanian. 2018. Trajectory planning
for heterogeneous robot teams. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 7924–7931.

[15] Ankur Deka and Katia Sycara. 2021. Natural Emergence of Heterogeneous
Strategies in Artificially Intelligent Competitive Teams. In Advances in Swarm
Intelligence: 12th International Conference. 13–25.

[16] DJI. Accessed: 2023-01-17. Robomaster S1. https://www.dji.com/robomaster-s1.
[17] Yousef Emam, Siddharth Mayya, Gennaro Notomista, Addison Bohannon, and

Magnus Egerstedt. 2020. Adaptive task allocation for heterogeneous multi-robot
teams with evolving and unknown robot capabilities. In 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 7719–7725.

[18] Yousef Emam, Gennaro Notomista, Paul Glotfelter, and Magnus Egerstedt. 2021.
Data-Driven Adaptive Task Allocation for Heterogeneous Multi-Robot Teams
Using Robust Control Barrier Functions. In 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 9124–9130.

[19] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon White-
son. 2016. Learning to communicate with deep multi-agent reinforcement learn-
ing. Advances in neural information processing systems 29 (2016).

[20] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-
mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 32.

[21] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. 2020. Se (3)-
transformers: 3d roto-translation equivariant attention networks. Advances in
Neural Information Processing Systems 33 (2020), 1970–1981.

[22] Brian P Gerkey and Maja J Mataric. 2002. Pusher-watcher: An approach to fault-
tolerant tightly-coupled robot coordination. In Proceedings 2002 IEEE International
Conference on Robotics and Automation, Vol. 1. IEEE, 464–469.

[23] Dani Goldberg and Maja J Mataric. 1997. Interference as a tool for designing and
evaluating multi-robot controllers. In Aaai/iaai. 637–642.

[24] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative
multi-agent control using deep reinforcement learning. In International conference
on autonomous agents and multiagent systems. Springer, 66–83.

[25] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro
Ortega, DJ Strouse, Joel Z Leibo, and Nando De Freitas. 2019. Social influence as
intrinsic motivation for multi-agent deep reinforcement learning. In International
Conference on Machine Learning. PMLR, 3040–3049.

[26] Chanyoung Ju and Hyoung Il Son. 2019. Modeling and control of heterogeneous
agricultural field robots based on Ramadge–Wonham theory. IEEE Robotics and
Automation Letters 5, 1 (2019), 48–55.

[27] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. Artificial intelligence
101, 1-2 (1998), 99–134.

[28] Soobum Kim, María Santos, Luis Guerrero-Bonilla, Anthony Yezzi, and Magnus
Egerstedt. 2022. Coverage Control of Mobile Robots With Different Maximum
Speeds for Time-Sensitive Applications. IEEE Robotics and Automation Letters 7,
2 (2022), 3001–3007.

[29] Ryan Kortvelesy and Amanda Prorok. 2022. QGNN: Value Function Factorisation
with Graph Neural Networks. arXiv preprint arXiv:2205.13005 (2022).

[30] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem,
Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier
Bousquet, et al. 2020. Google research football: A novel reinforcement learning
environment. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 4501–4510.

[31] Ling Li, Alcherio Martinoli, and Yaser S Abu-Mostafa. 2004. Learning and mea-
suring specialization in collaborative swarm systems. Adaptive Behavior 12, 3-4
(2004), 199–212.

[32] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-
berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstractions
for distributed reinforcement learning. In International Conference on Machine
Learning. PMLR, 3053–3062.

[33] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. Advances in neural information processing systems 30 (2017).

[34] Matthew Malencia, Sandeep Manjanna, M Ani Hsieh, George Pappas, and Vijay
Kumar. 2022. Adaptive Sampling of Latent Phenomena using Heterogeneous
Robot Teams (ASLaP-HR). arXiv preprint arXiv:2208.06053 (2022).

[35] Sandeep Manjanna, Alberto Quattrini Li, Ryan N Smith, Ioannis Rekleitis, and
Gregory Dudek. 2018. Heterogeneous multi-robot system for exploration and
strategic water sampling. In 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, 4873–4880.

[36] Siddharth Mayya, Diego S D’antonio, David Saldaña, and Vijay Kumar. 2021.
Resilient task allocation in heterogeneous multi-robot systems. IEEE Robotics
and Automation Letters 6, 2 (2021), 1327–1334.

[37] Nathan Michael, Shaojie Shen, Kartik Mohta, Vijay Kumar, Keiji Nagatani, Yoshito
Okada, Seiga Kiribayashi, Kazuki Otake, Kazuya Yoshida, Kazunori Ohno, et al.
2014. Collaborative mapping of an earthquake damaged building via ground and
aerial robots. In Field and service robotics. Springer, 33–47.

[38] John F Nash Jr. 1950. Equilibrium points in n-person games. Proceedings of the
national academy of sciences 36, 1 (1950), 48–49.

[39] Gennaro Notomista, Siddharth Mayya, Yousef Emam, Christopher Kroninger,
Addison Bohannon, Seth Hutchinson, and Magnus Egerstedt. 2021. A resilient and
energy-aware task allocation framework for heterogeneous multirobot systems.
IEEE Transactions on Robotics 38, 1 (2021), 159–179.

[40] Gennaro Notomista, Siddharth Mayya, Seth Hutchinson, and Magnus Egerstedt.
2019. An optimal task allocation strategy for heterogeneous multi-robot systems.
In 2019 18th European Control Conference (ECC). IEEE, 2071–2076.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[42] Luciano CA Pimenta, Vijay Kumar, Renato C Mesquita, and Guilherme AS Pereira.
2008. Sensing and coverage for a network of heterogeneous robots. In 2008 47th
IEEE conference on decision and control. IEEE, 3947–3952.

[43] Amanda Prorok, M Ani Hsieh, and Vijay Kumar. 2017. The impact of diversity
on optimal control policies for heterogeneous robot swarms. IEEE Transactions
on Robotics 33, 2 (2017), 346–358.

[44] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International Conference
on Machine Learning. PMLR, 4295–4304.

[45] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-
quhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob
Foerster, and Shimon Whiteson. 2019. The StarCraft Multi-Agent Challenge.
In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems. 2186–2188.

[46] María Santos, Yancy Diaz-Mercado, and Magnus Egerstedt. 2018. Coverage
control for multirobot teams with heterogeneous sensing capabilities. IEEE
Robotics and Automation Letters 3, 2 (2018), 919–925.

[47] Miguel Schneider-Fontan and Maja J Mataric. 1998. Territorial multi-robot task
division. IEEE Transactions on Robotics and Automation 14, 5 (1998), 815–822.

[48] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[49] Esmaeil Seraj, Zheyuan Wang, Rohan Paleja, Daniel Martin, Matthew Sklar,
Anirudh Patel, and Matthew Gombolay. 2022. Learning efficient diverse com-
munication for cooperative heterogeneous teaming. In Proceedings of the 21st

https://www.dji.com/robomaster-s1

International Conference on Autonomous Agents and Multiagent Systems. 1173–
1182.

[50] Beining Shang, Richard Crowder, and Klaus-Peter Zauner. 2014. Swarm be-
havioral sorting based on robotic hardware variation. In 2014 4th International
Conference On Simulation And Modeling Methodologies, Technologies And Applica-
tions (SIMULTECH). IEEE, 631–636.

[51] Ajay Shankar, Sebastian Elbaum, and Carrick Detweiler. 2021. Freyja: A full
multirotor system for agile & precise outdoor flights. In 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 217–223.

[52] Riccardo Spica, Eric Cristofalo, Zijian Wang, Eduardo Montijano, and Mac Schwa-
ger. 2020. A real-time game theoretic planner for autonomous two-player drone
racing. IEEE Transactions on Robotics 36, 5 (2020), 1389–1403.

[53] Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learning multiagent communica-
tion with backpropagation. Advances in neural information processing systems 29
(2016).

[54] Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin
Black. 2020. Revisiting parameter sharing in multi-agent deep reinforcement
learning. arXiv preprint arXiv:2005.13625 (2020).

[55] Ceyer Wakilpoor, Patrick J Martin, Carrie Rebhuhn, and Amanda Vu. 2020. Hetero-
geneous multi-agent reinforcement learning for unknown environment mapping.
arXiv preprint arXiv:2010.02663 (2020).

[56] Mingyu Wang, Zijian Wang, John Talbot, J Christian Gerdes, and Mac Schwager.
2021. Game-theoretic planning for self-driving cars in multivehicle competitive
scenarios. IEEE Transactions on Robotics 37, 4 (2021), 1313–1325.

[57] Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. 2020. ROMA:
Multi-Agent Reinforcement Learning with Emergent Roles. In International Con-
ference on Machine Learning. PMLR, 9876–9886.

[58] T Wang, T Gupta, B Peng, A Mahajan, S Whiteson, and C Zhang. 2021. RODE:
learning roles to decompose multi- agent tasks. In Proceedings of the International
Conference on Learning Representations.

[59] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[60] Javier Yu, Joseph A Vincent, and Mac Schwager. 2022. DiNNO: Distributed Neural
Network Optimization for Multi-Robot Collaborative Learning. IEEE Robotics
and Automation Letters 7, 2 (2022), 1896–1903.

[61] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021. Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms. Handbook of
Reinforcement Learning and Control (2021), 321–384.

A EXPERIMENTAL SETUP
A.1 Simulation
We attach all the code used for simulations and training. Simulations
are performed in the VMAS [6] simulator. All environments are
customly created apart from Scenario B which is adapted from one
of the scenarios already available in the simulator. The training is
performed in RLlib [32] using PyTorch [41] and an implementation
of the PPO algorithm for multi-agent training. The general training
parameters used are shown in Tab. 2. Small variations of these are
done on a per-environment basis and can be seen in the training
scripts attached. The GPPO and HetGPPO model implementations
and details are available in the code. Training is performed on a
NVIDIA GeForce RTX 2080 Ti GPU. Each worker collects experi-
ence from the simulator using an Intel(R) Xeon(R) Gold 6248R CPU
@ 3.00GHz.

Table 2: PPO training parameters.

Training PPO
Batch size 60000 𝜖 0.2
Minibatch size 4096 𝛾 0.99
SDG Iterations 40 𝜆 0.9
Workers 5 Entropy coeff 0
Envs per worker 50 KL coeff 0.01
Learning rate 5e-5 KL target 0.01

A.2 Real-world
Real-world experiments are performed using an Optitrack7 motion
capture system with 12 cameras to provide positional informa-
tion to the robots. The robots used are holonomic RoboMaster
S1 ground robots8, running a customized model-based controller
onboard [51].

B SCENARIO B REWARD STRUCTURE
The reward used to train Scenario B is comprised of two compo-
nents: a positional reward and a collision reward.

The positional reward is proportional to the time delta in relative
distance of an agent from its goal. In other words, a positive reward
is assigned if an agent moves towards its goal and a negative one
if it moves away. The agents receive a shared positional reward
equal to the sum of their individual positional rewards. When both
agents are placed on their goal, they keep receiving an additional
final reward. The episode ends after 500 timesteps.

The collision reward is a constant penalty assigned to each agent
in the presence of collisions. When training starts, the only colli-
sions penalized are inter-agent ones. A curriculum is set up through-
out training so that, when the agents’ positional reward gets high
enough to symbolize that they solved the task, collisions at the re-
cesses start being penalized as well. This is done so that the agents
are able to first learn to solve the task and can then fine-tune their
performance by removing collisions.

C SIM TO REAL TRANSFER
To deploy policies trained in the VMAS simulator to the real world,
we iteratively tune some simulation hyperparameters to fit the
real-world conditions. These parameters are dependent just on the
robots and their interaction with the real-world. Once tuned, they
can be used for any training scenario.

The parameters that were key to a successfully deployment are
linear friction and drag. Since we operate with ground robots at
relatively low speeds, we set drag to 0 and tune linear friction.
Through 3 real to sim iterations of binary search we were able to
find the correct friction value for our robot-ground pair. Together
with friction, we tuned the maximum acceleration in simulation to
fit the real robot one. These parameters were tested and validated on
simple single-robot tasks such as trajectory following and moving
to a goal position.

7https://optitrack.com/
8https://www.dji.com/uk/robomaster-s1

https://optitrack.com/
https://www.dji.com/uk/robomaster-s1

	Abstract
	1 Introduction
	2 Taxonomy of heterogeneous systems
	3 RELATED WORK
	3.1 Heterogeneity in multi-robot systems
	3.2 Heterogeneity in MARL

	4 Problem formulation
	5 Heterogeneous model
	6 Behavioral typing
	6.1 Explicit behavioral typing
	6.2 Inferred behavioral typing for physically heterogeneous agents
	6.3 Inferred behavioral typing for physically identical agents
	6.4 Limitations of behavioral typing

	7 Experimental evaluations
	8 Conclusion
	References
	A Experimental setup
	A.1 Simulation
	A.2 Real-world

	B Scenario b reward structure
	C Sim to real transfer

