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Abstract
The study of behavioral diversity in Multi-Agent
Reinforcement Learning (MARL) is a nascent
yet promising field. In this context, the present
work deals with the question of how to control
the diversity of a multi-agent system. With no
existing approaches to control diversity to a set
value, current solutions focus on blindly promot-
ing it via intrinsic rewards or additional loss func-
tions, effectively changing the learning objective
and lacking a principled measure for it. To ad-
dress this, we introduce Diversity Control (DiCo),
a method able to control diversity to an exact
value of a given metric by representing policies
as the sum of a parameter-shared component and
dynamically scaled per-agent components. By
applying constraints directly to the policy archi-
tecture, DiCo leaves the learning objective un-
changed, enabling its applicability to any actor-
critic MARL algorithm. We theoretically prove
that DiCo achieves the desired diversity, and we
provide several experiments, both in cooperative
and competitive tasks, that show how DiCo can be
employed as a novel paradigm to increase perfor-
mance and sample efficiency in MARL. Multime-
dia results are available on the paper’s website1.

1. Introduction
Diversity is key to collective intelligence (Woolley et al.,
2015) and commonplace in natural systems (Kellert, 1997).
Just as biologists and ecologists have demonstrated the role
of functional diversity in ecosystem survival (Cadotte et al.,
2011), it has also been shown to provide important per-
formance benefits in Multi-Agent Reinforcement Learning
(MARL) (Bettini et al., 2023b; Chenghao et al., 2021). De-
spite this, methods that leverage diversity in MARL are
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understudied, with the field still in its infancy. In particular,
one question that remains unanswered is how to control a
system’s diversity to an exact, quantified value. This is the
focus of this work.

Behavioral diversity in MARL is intrinsically tied to the con-
cept of policy parameter sharing (Christianos et al., 2021).
When agents share policy parameters, they obtain higher
sample efficiency, but learn a single homogeneous policy.
When agents do not share parameters, they are able to learn
heterogeneous policies, but achieve lower sample efficiency.
Following the latter paradigm, several methods have been
proposed to promote behavioral diversity, showing its utility
in many MARL problems (Jiang & Lu, 2021; Chenghao
et al., 2021; Mahajan et al., 2019; Wang et al., 2020). These
approaches aim to boost diversity by employing information
theoretical objectives, such as additional intrinsic rewards
or secondary losses. In doing so, they effectively change
the learning objective, without being able to measure the
resulting diversity. In contrast, rather than than boosting
diversity, we propose a novel problem formulation that aims
to control diversity to the exact value of a given metric, leav-
ing the learning objective unchanged. This paradigm opens
new avenues for the control and study of diversity in MARL,
presenting a novel tool that researchers can use to constrain
agents to different diversity levels, aiding in the discovery
of emergent strategies that leverage the benefits of diversity.

We propose Diversity Control (DiCo), the first method to
control behavioral diversity in MARL to a desired value,
applicable to any actor-critic algorithm with stochastic or
deterministic continuous actions. Bypassing issues (men-
tioned above) that change the structure of the learning ob-
jective, DiCo finds a new approach to diversity control. It
represents policies as the sum of a parameter-shared (homo-
geneous) component and individual (heterogeneous) com-
ponents, which are dynamically scaled according the the
current and desired value of a given diversity metric. We pro-
vide theoretical proofs that DiCo achieves the desired diver-
sity and demonstrate it empirically in a didactic case-study
(i.e., Multi-Agent Navigation). Whereas previous works
lacked tools to inspect the learned policies, we present novel
visualizations of the policies’ diversity distribution, which
enable to analyze how the agent policies learn to distribute
the diversity dictated by DiCo over the observation space.
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To showcase some possible applications of DiCo, we run ex-
periments in four cooperative and competitive MARL tasks,
comparing DiCo agents (constrained to different levels of di-
versity) to homogeneous and unconstrained heterogeneous
agents. Our experiments show that, by constraining the
policy search space, DiCo can achieve higher performance,
exploration, and sample efficiency. Via trajectory analyses
of the learned DiCo policies, we show how different diver-
sity constraints can lead to the discovery of multiple novel
emergent strategies in various tasks. Multimedia experiment
results are available on the paper’s website1.

Our contributions are as follows:

• DiCo, the first method to control behavioral diversity
in MARL to a set value of a given diversity metric,
complemented with theoretical proofs and empirical
demonstrations of achieving the desired diversity;

• Novel visualization tools to investigate the policies’
diversity distribution, that showcase how agents dis-
tribute the diversity dictated by DiCo over the observa-
tion space;

• A set of MARL experiments in cooperative and com-
petitive tasks, demonstrating several benefits of the
DiCo method and the emergence of novel strategies.
In particular, we gather the following insights:

– In tasks that benefit from diversity, where uncon-
strained heterogeneous policies learn a subopti-
mal low-diversity strategy, we show how DiCo
can be employed to find better-performing and
more diverse strategies faster;

– In tasks that benefit from homogeneity, where
unconstrained heterogeneous policies prove less
sample efficient and too diverse, we show how
DiCo can find less-diverse optimal policies faster;

– We show how DiCo, by constraining the search
space of heterogeneous policies, can be used to
find novel emergent strategies.

2. Related Works
Diversity in MARL has recently gained increasing attention.
In particular, several works have outlined the caveats and im-
plications of parameter sharing across agent policies (Chris-
tianos et al., 2021; Fu et al., 2022; Bettini et al., 2023b).
These works show that, despite homogeneous policies could
emulate diverse behavior based on the input context, param-
eter sharing can impede the learning of diverse behavioral
roles, prove brittle with respect to noise, or completely pre-
vent success in certain tasks. In the following paragraphs,
we review existing approaches to promote behavioral diver-
sity in MARL. Additional related works, including diversity
in population-based RL, are presented in App. D.

Diversity via Intrinsic Reward. A common solution to
promote diversity among agents in a system is to design an
intrinsic reward that is added to the task reward, creating
an auxiliary objective for the agents. Jaques et al. (2019)
introduce an intrinsic reward based on mutual information
between the agents’ actions in order to promote social influ-
ence. Wang et al. (2019) propose another influence-based
reward structure to promote exploration, additionally con-
sidering the influence on other agents’ transition and reward
functions. Jiang & Lu (2021) introduce an intrinsic re-
ward based on the mutual information between an agent’s
identity and observation. Lastly, Chenghao et al. (2021)
consider agents equipped with both shared and individual
networks, that are optimized using an intrinsic reward based
on the mutual information between an agent’s identity and
its trajectory. While intrinsic motivation via additional re-
wards constitutes a powerful diversity boosting mechanism,
it could introduce learning issues due to its interaction with
the primary task reward and, thus, require extensive re-
tuning when applied to new tasks. Furthermore, it modifies
the RL objective, which can impact the optimality of the
learned policy in the original problem. For these reasons, we
do not consider intrinsic reward structures in our diversity
control paradigm.

Diversity via Objective Function. Another solution to
promote diversity considers designing an auxiliary loss as a
diversity booster. In MAVEN (Mahajan et al., 2019) agents
condition their behavior on a shared latent variable con-
trolled by a hierarchical policy. MAVEN’s objective then
maximizes mutual information between the trajectories and
latent variables to learn a diverse set of behaviors. ROMA
(Wang et al., 2020) introduces a diversity regularizer to in-
centivize learning specialized roles in cooperative tasks. The
addition of a secondary objective, however, can impact the
main learning objective, requiring careful task-dependent
tuning. In contrast, our approach does not employ additional
objective functions to control diversity.

All the approaches presented in this section devise additional
objectives to promote diversity across agents in a system,
either in the form of an intrinsic reward term or an auxiliary
loss. Furthermore, most works focus on discrete action
spaces, where it is not possible to quantify action diversity
using a continuous metric. In contrast, our work enables
controlling diversity in continuous action spaces to the exact
desired value of a given diversity metric by architecturally
constraining the agents’ policy networks, thus obviating the
need for additional diversity-based objectives or rewards.

3. Background
In this section, we introduce the task formulation and the be-
havioral diversity metric that will be utilized in our problem
formulation and method.
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Partially Observable Markov Games. A Partially Observ-
able Markov Game (POMG) (Shapley, 1953) is defined as a
tuple〈
N ,S, {Oi}i∈N , {σi}i∈N , {Ai}i∈N , {Ri}i∈N , T , γ

〉
,

where N = {1, . . . , n} denotes the set of agents, S is the
state space, and, {Oi}i∈N and {Ai}i∈N are the observa-
tion and action spaces, with Oi ⊆ S, ∀i ∈ N . Further,
{σi}i∈N and {Ri}i∈N are the agent observation and re-
ward functions (potentially identical for all agents2), such
that σi : S 7→ Oi, and, Ri : S × {Ai}i∈N × S 7→
R. T is the stochastic state transition model, defined as
T : S × {Ai}i∈N 7→ ∆S, which outputs the probability
T (st, {ati}i∈N , st+1) of transitioning to state st+1 ∈ S
given the current state st ∈ S and actions {ati}i∈N , with
ati ∈ Ai. γ is the discount factor. Agents are equipped with
(possibly stochastic) policies πi(ai|oi), which compute an
action given a local observation.

System Neural Diversity. Several measures have been
proposed to quantify behavioral diversity among agent poli-
cies (McKee et al., 2022; Yu et al., 2021; Hu et al., 2022; Bet-
tini et al., 2023c). In this work, we employ System Neural
Diversity (SND) (Bettini et al., 2023c) as it is the only metric
that can be computed in closed-form between the continu-
ous action distributions provided as output by the policies.
While the theorem presented in this work leverages the prop-
erties of this metric, other metrics could equivalently be used
as long as the main theorem results are proven to hold. In
App. E we: (1) present a theorem that defines the properties
that a diversity metric needs to satisfy in order to be used in
DiCo, and (2) provide further motivation for the use of SND
in this work. SND is a behavioral diversity metric that mea-
sures heterogeneity in a multi-agent system. It is computed
in two phases. First, the Wasserstein statistical metric (Vaser-
stein, 1969) is used to measure the diversity between two
agents’ policies over a set O of observations (generated via
rollouts): d(πi, πj) = 1

|O|
∑

o∈O W2(πi(o), πj(o)). This
distance can be computed in closed-form for deterministic
policies and for stochastic policies outputting multivariate
normal distributions. Pairwise behavioral distances are then
aggregated in a system-level metric by taking the mean
over agent pairs SND({πi}i∈N ) =

2
∑n

i=1

∑n
j=i+1 d(πi,πj)

n(n−1) ,
leading to the following expression for SND:

SND({πi}i∈N ) =

2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

W2(πi(o), πj(o)). (1)

The choice of SND over alternative measures is motivated
2In this work we consider also problems represented as Dec-

POMDPs (Bernstein et al., 2002), which are a particular subclass
of POMGs with one shared reward function.

by several desirable properties. Firstly, by using W2, SND
presents all the properties of a statistical metric (Menger &
Menger, 2003), which would not hold for diversity measures
based on statistical divergences (e.g., Kullback–Leibler di-
vergence). Secondly, it provides invariance in the number
of equidistant agents, meaning that the measured diversity
is not impacted by the system size when all agents are be-
haviorally equidistant. This allow to devise diversity control
inputs that are independent of the number of agents.

4. Problem Formulation
The goal of this work is to control the agents’ behavioral
diversity SND({πi}i∈N ) given a desired input diversity
SNDdes. In other words, given a POMG representing a
multi-agent task, we are interested in learning a set of poli-
cies {πi}i∈N such that:

SND({πi}i∈N ) = SNDdes. (2)

To train the policies, we consider actor-critic algorithms
(both on and off policy), using the Centralized Training
Decentralized Execution (CTDE) MARL paradigm (Lowe
et al., 2017), where agents are trained using global infor-
mation and then deployed with independent local policies.
We consider policies represented either as deterministic
functions πi = [µi] or as stochastic normal distributions
πi = [µi, σi] with µi, σi ∈ Rm.

5. Method
In this section, we introduce the Diversity Control (DiCo)
framework (Fig. 1). DiCo controls the behavioral diversity
of a multi-agent system to a desired value by constraining
the agent policies, thereby not requiring any additional in-
trinsic reward or diversity objective. By consisting only
of architectural constraints applied to the actor network, it
can be utilized with any actor-critic MARL algorithm with
(deterministic or stochastic) continuous actions. The DiCo
pseudocode is reported in Sec. G.1.

5.1. Representing Policies as Heterogeneous Deviations
From A Homogeneous Reference

Multi-agent policies πi have been traditionally represented
either as parameter-shared networks or as completely in-
dependent functions. Parameter sharing forces all policies
to be identical and thus conditioned on the same set of pa-
rameters. This improves the training sample efficiency, but
forces behavioral homogeneity (i.e. SND({πi}i∈N ) = 0).
On the other hand, completely independent networks can
learn heterogeneous functions, but are less sample efficient,
as n different policies need to be learned instead of one. To
leverage the benefits of both approaches and to apply the
structural heterogeneity constraint proposed in this work, we
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Figure 1. DiCo architecture overview. Multi-agent policies are rescaled to match the desired behavioral diversity SNDdes. The scaling
factor is computed as the desired diversity divided by the actual diversity of the unscaled policies, which is updated during training. This
process is described in Alg. 1.

consider policies represented by the sum of a homogeneous
parameter-shared component πh(o) and a heterogeneous
per-agent deviation πh,i(o):

πi(o) = πh(o) + πh,i(o), (3)

where πh is parameterized by shared parameters θh and πh,i

is parameterized by per-agent parameters θh,i. Note that
this sum is computed over the action distribution parameters
(πi = [µi, σi]), and not the sampled actions.

By representing multi-agent policies in this manner, we can
leverage the sample efficiency benefits of parameter sharing,
while avoiding its behavioral homogeneity constraints.

5.2. Constraining Heterogeneous Policies via Rescaling

The core idea presented in this work is that of rescaling
multi-agent policies (represented as heterogeneous devia-
tions from a homogeneous reference) to achieve the de-
sired behavioral diversity. To do so we: (1) normalize the
agent policy deviations by their diversity prior to rescal-
ing ŜND := SND({πh,i}i∈N ) and (2) multiply them by
the desired diversity SNDdes. This yields the following
formulation for the agent policies:

πi(o) = πh(o) +
SNDdes

ŜND
πh,i(o). (4)

Theorem 5.1 (Controlling diversity by rescaling agent poli-
cies). Given a set of multi-agent policies {πi}i∈N of the
form presented in Eq. 4 and a desired diversity SNDdes,
then the diversity of the policies {πi}i∈N is equal to the
desired value: SND({πi}i∈N ) = SNDdes.

Proof. We provide proofs for three policy types: (1) deter-
ministic policies πh(o) = [µh(o)], πh,i(o) = [µh,i(o)], (2)
policies producing multivariate normal distributions with a

homogeneous standard deviation πh(o) = [µh(o), σh(o)],
πh,i(o) = [µh,i(o), 0], (3) policies producing multivariate
normal distributions with a heterogeneous standard devia-
tion πh(o) = [µh(o), 0], πh,i(o) = [µh,i(o), σh,i(o)]. The
proofs are reported in App. F.

Theorem 5.1 states that by rescaling multi-agent policies
according to Eq. 4, we are guaranteed to achieve the desired
diversity SNDdes. Note that in the special case where agents
are controlled to be homogeneous (SNDdes = 0), the policy
formulation becomes a simple parameter-shared network
πi(o) = πh(o).

Computing ŜND. In order to compute the scaling factor,
we need to measure the SND of the policies prior to rescal-
ing:

ŜND := SND({πh,i}i∈N )

=
2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

W2(πh,i(o), πh,j(o)).

Since this quantity is dependent on the learned policy de-
viations πh,i, it needs to be computed only at training time
for every policy update. In doing so, the choice of the ob-
servation set O, where the diversity is evaluated, plays an
important role. O needs to be large enough to accurately
represent the observation distribution seen by the agents,
while remaining small enough to avoid unnecessary com-
putational overhead. We construct O from the training data
batches3. The set O is created by unifying the observations
from all agents and all timesteps in a batch. This grants an
unbiased estimation of the observation distribution given the
current policies. To reduce the variance of this estimation,
and to stabilize the diversity updates, we further employ a

3This is the data sampled from the replay buffer in off-policy al-
gorithms or the training SGD minibatches in on-policy algorithms.
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soft update mechanism:

ŜND = τSND({πh,i}i∈N ) + (1− τ)ŜND,

where τ ∈ [0, 1] ⊂ R regulates the reliance on the diver-
sity measured from the most recent batch. In App. H, we
perform an empirical evaluation for different values of τ to
confirm this claim.

Determining SNDdes. The desired diversity SNDdes is the
main control input required for this method. Its values repre-
sents the desired average Wasserstein distance among agent
policy pairs. While in traditional methods the choice of shar-
ing policy parameters allows a binary decision between a
diversity of zero and an unconstrained diversity, SNDdes al-
lows to constrain the agent policy networks to any specified
diversity. By constraining the policies at a given diversity,
the search space of learnable policies is significantly re-
duced, aiding in the search of the optimal set. There are a
variety of ways to find the value of SNDdes that will opti-
mize a given problem. It could be determined in an outer
optimization loop, where training is iteratively performed
at different diversity levels to optimize a given metric of
interest (e.g., performance, resilience)—Sec. G.2 illustrates
an algorithm implementing this closed-loop paradigm. It
can also be utilized as a human input prior, decided depend-
ing on the multi-agent task. Example applications include:
boosting exploration, avoiding local minima in the policy
search, or simply inspecting emergent strategies at different
diversity levels. In Sec. 7 we provide experiments highlight-
ing these applications. To aid in the choice of SNDdes, in
Sec. G.3, we introduce the optimization problem to com-
pute the maximum possible SND in a bounded action space,
which can be solved to obtain an upper bound on the value
of SNDdes.

In App. G we present further details about the method, in-
cluding how to disincentivize the placement of diversity
outside the action domain in the context of bounded action
spaces.

6. Case Study: Multi-Agent Navigation

To illustrate how DiCo works, we consider the Multi-Agent
Navigation task (Fig. 2) from the VMAS simulator (Bettini
et al., 2022). In this task, n = 2 agents are spawned at
random positions in a 2D workspace. Each agent is assigned
a goal, also spawned at random. Agents observe the relative
position to all goals and output a 2D action distribution
representing their force movement vector. The reward for
each agent is the difference in the relative distance to its
goal over consecutive timesteps, incentivizing agents to
move towards their goals. This task requires heterogeneous
behavior as each agent is given the same observation and
needs to tackle a different goal.

By comparing multiple policies trained with DiCo, we can
analyze the effects of different diversity levels on solution
behavior. Using the IPPO algorithm (de Witt et al., 2020)
in the BenchMARL library, we train policies with various
desired diversity levels SNDdes, as well as an unconstrained
policies (Eq. 3). The results are reported in Fig. 2.

In the diversity plot in the top right, we report the
SND({πi}i∈N ) measured throughout learning. Note that
all the constrained agents match the desired diversity, pro-
viding empirical evidence to support our theoretical claims
about DiCo’s ability to constrain diversity. In this particular
task, we find that performance increases as a function of
input diversity, as shown in the reward plot in the top center.
This is due to the fact that the task requires heterogeneous
behavior and, thus, constraining to a low diversity prevents
agents from navigating to different goals. In the limit case
where agents are fully homogeneous (i.e. SNDdes = 0), the
agents learn to settle at the midpoint between goals.

To analyze how the agents learn to distribute the diversity
budget over the observation space, we define the diversity
in a given observation as:

SNDo({πi}i∈N , o) =

2

n(n− 1)

n∑
i=1

n∑
j=i+1

W2(πi(o), πj(o)),

and plot it for every o in the observation space. In other
words, for each position in the environment, we plot the
diversity between all agent action distributions, if they were
computed for that position. This is visualized as a colormap
overlaid upon the rendered environment, as shown in the
bottom of Fig. 2. They show that, with a low diversity bud-
get, agents are forced to act homogeneously and, thus, all
learn to converge between the goals, minimizing the team
distance from all goals. As the budget increases, agents are
able to take different actions. It is important to note that they
always learn to place high diversity between the goals, as
this area contains the observations where they need to travel
opposite directions. Furthermore, they avoid placing hetero-
geneity in regions where the goals lie in the same direction,
as they need to take homogeneous actions in those areas.
This leads to the emergence of a certain regularity in the di-
versity distributions of constrained agents, which resemble
the shape of a cross. In contrast, unconstrained heteroge-
neous agents obtain a more chaotic landscape, sometime
placing diversity in unnecessary areas.

This case study illustrates the functionality of the DiCo
method, showing the emergent diversity distributions over
the observation space at different constraint levels. In App. I,
we delve into more detail about this task, discussing the
effects of choosing an SNDdes that is “too high”, and pre-
senting results from an additional version of this task where
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Max diversity

No diversity
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Figure 2. Illustration of the Multi-Agent Navigation case study. Top left: Example task rendering illustrating task components. System
diversity is evaluated for each observation in the 2D space and plotted in the background colormap. Top center: Mean instantaneous
reward for agents trained with different desired diversities. Top right: SND({πi}i∈N ) evaluated for agents trained with different desired
diversities. Bottom: Renderings of the diversity distribution over the observation space for agents trained with different desired diversities.
With a low diversity budget, agents are not able to go to different goals and learn to converge to the midpoint between goals. As the
diversity budget increases, agents learn to distribute diversity in the observations where it is most useful and learn more regular diversity
landscapes than the unconstrained case. Curves report mean and standard deviation for the IPPO algorithm over 4 training seeds.

all agents need to navigate to the same goal. In such a sce-
nario, where diversity is detrimental, agents with different
heterogeneity constraints are forced to learn diverse emer-
gent strategies to achieve the same homogeneous objective.
Renderings are available on the website1.

7. Experiments
We present further experiments that highlight different ap-
plications of DiCo. We consider the tasks in Fig. 3 from
the VMAS simulator (Bettini et al., 2022). Training is per-
formed in the BenchMARL library (Bettini et al., 2023a)
using TorchRL (Bou et al., 2024) in the backend. Depend-
ing on the task, we use either the IPPO (de Witt et al., 2020)
algorithm with stochastic policies, or DDPG-based algo-
rithms (i.e., MADDPG (Lowe et al., 2017), Independent
DDPG (IDDPG)), with deterministic policies. The algo-
rithms have been chosen according to the task needs (e.g.,
reward sparsity), but DiCo is not limited to these choices
and can be applied to any actor-critic algorithm4.

7.1. Dispersion: Tackling Multiple Objectives

In Dispersion (Fig. 3(a)), n agents are spawned in the center
of a 2D workspace, and n food particles are spawned around
them at random positions. All agents observe the relative

4All the actor-critic algorithms already available in Bench-
MARL work out-of-the-box with the DiCo implementation pro-
vided (e.g., MASAC, ISAC).

position to all food particles and whether they have been
consumed. Agent actions are 2D forces that determine their
motion. Agents get a sparse reward of 1 for eating food.
Rewards are shared among all agents. Each food particle is
consumable only once. The optimal policy in this scenario
requires each agent to tackle a different food particle.

We train n = 4 agents using MADDPG with different DiCo
constraints, as well as unconstrained heterogeneous polices.
In Fig. 4, we report the mean instantaneous training reward
and the measured diversity. As expected, homogeneous
agents (SNDdes = 0) achieve the lowest reward. Having
to share the same policy and starting in the same position,
homogeneous agents are not able to go to different food
particles and thus learn to all tackle one particle at a time
in a group. Unconstrained heterogeneous agents, on the
other hand, are able to navigate to different food particles,
but need to learn the optimal assignment through training
(shown by the increasing diversity curve). When training
ends, their policy is still suboptimal, with two agents some-
times pursuing the same food. In contrast, by constraining
agents to a higher diversity (SNDdes = 6), we are able
to bootstrap the diversity discovery process and learn the
optimal policy, achieving faster training convergence. The
results confirm that, in this task, diversity is proportional
to performance and we can use DiCo to find higher per-
forming policies faster than unconstrained heterogeneous
agents. App. J further illustrates these results by providing
an analysis of the agent trajectories.
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(a) Dispersion. (b) Sampling. (c) Tag. (d) Reverse Transport.

Figure 3. Multi-agent tasks from the VMAS simulator analyzed in our experiments.
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Figure 4. Results from training agents with different constraints
on the Dispersion task. Left: Mean instantaneous reward. Right:
Measured diversity SND({πi}i∈N ). Curves report mean and
standard deviation for the MADDPG algorithm over 4 training
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Figure 5. Results from training agents with different constraints
on the Sampling task. Left: Mean instantaneous reward. Right:
Measured diversity SND({πi}i∈N ). Curves report mean and
standard deviation for the IDDPG algorithm over 3 training seeds.

7.2. Sampling: Boosting Exploration

In Sampling (Fig. 3(b)), n agents are spawned in the center
of a 2D workspace. The workspace presents an underly-
ing uniform distribution (discretized in cells of agent size).
Agent actions are 2D forces that determine their motion.
Agents observe their position and the value of the distribu-
tion in a local 3× 3 neighborhood. When an agent visits a
cell, it takes a sample without replacement, which dictates
the reward. Rewards are shared among all agents. Therefore,
agents need to spread out and actively sample different parts
of the workspace to solve this task.
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Figure 6. Results from training agents with different constraints on
the Tag task. Left: Mean instantaneous reward. Right: Measured
diversity SND({πi}i∈N ). Curves report mean and standard devi-
ation for the IPPO algorithm over 5 training seeds.

We train n = 3 agents using IDDPG with different DiCo
constraints, as well as unconstrained heterogeneous polices.
In Fig. 5, we report the mean instantaneous training reward
and the measured diversity. As in Dispersion, this task re-
quires agents to be diverse in order to spread over the obser-
vation space. Therefore, we see how homogeneous agents
(SNDdes = 0) achieve the lowest reward, all visiting the
same area of the space. Unconstrained heterogeneous agents
are able to spread their coverage, but sometimes revisit cells
sampled by others, making their policy suboptimal. By forc-
ing the agents to a higher diversity SNDdes = 5, we are able
to enforce a wider spread, with each agent focusing on a sep-
arate area of the space. This is shown in the training curves,
which indicate that the obtained reward is proportional to
the desired diversity. The results demonstrate that DiCo can
be used as an effective method to boost exploration and im-
prove the agent coverage of the observation space, leading
to higher performing policies than the unconstrained hetero-
geneous method. App. K further illustrates these results by
providing an analysis of the agent trajectories.

7.3. Tag: Emergent Adversarial Strategies

Tag (Lowe et al., 2017)(Fig. 3(c)) is an adversarial task
where a team of n red agents is rewarded for tagging the
green agent. All agents are spawned at random positions in a
2D space, alongside two randomly spawned obstacles (black

7
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circles). Agents can collide among each other and with
obstacles. Actions are 2D forces that determine their motion.
They observe their position and the relative positions to all
other agents. Red agents obtain a shared reward of 1 for
each timestep where they are touching the green agent. The
green agent gets a reward of -1 for the same condition.

We train n = 2 red agents using IPPO with different DiCo
constraints, as well as unconstrained heterogeneous polices.
The green agent is also trained with IPPO for 3 million
frames, and frozen for the remainder of training. In Fig. 6,
we report the mean instantaneous training reward and the
measured diversity of the red agents. From the plots, we
observe that homogeneous agents (SNDdes = 0) and un-
constrained heterogeneous agents obtain similar rewards,
with the heterogeneous model performing slightly better.
We also train a DiCo constrained model at the diversity
level obtained by the unconstrained one (SNDdes = 0.3)
and observe that this model achieves the same reward. By
inspecting the rollouts of these policies, we note that they
present a behavioral similarity: the red agents blindly chase
the green one, all trying to minimize their distance to the
target. In real-life ball sports, this is a well-known myopic
and suboptimal strategy (e.g., an entire team chasing the
ball in soccer). We can intuitively also see its suboptimality
in this task: due to the shared nature of the tagging reward,
the chasing agents could improve their spatial coverage
by diversifying their strategies. To confirm our hypothe-
sis, we perform experiments with a higher desired diversity
(SNDdes = 0.6). The results prove our hypothesis, with
the constrained model able to almost double the obtained
reward. The agents, constrained at this diversity, show the
emergence of several fascinating new strategies that resem-
ble strategies employed by human players in ball games
(e.g., man-to-man marking, pinching maneuvers, spreading
to cut off the evader). See App. L for an in-depth analy-
sis. The results demonstrate that, by constraining the policy
search space to a specified diversity level, DiCo can be
used to learn novel and diverse strategies that can overcome
the suboptimality of unconstrained heterogeneous agents.
App. L analyzes agent rollouts from this experiment, illus-
trating some of the emergent strategies.

8. Discussion and Limitations
Lower Diversity Constraints. Up to this point, we have
mainly shown applications where diversity constraints that
force a higher diversity than the one achieved by uncon-
strained policies can be used to obtain higher performance.
In App. M, we provide a further experiment, in the Reverse
Transport (Fig. 3(d)) task, showing that, by leveraging user
priors about the role of diversity in a task, it is also possible
to improve the training process by forcing a lower diversity
than the one achieved by the unconstrained method.

Inequality Diversity Constraints. In this paper, we have
focused on constraining the agents’ diversity to a particular
value. However, using the same paradigm, it is also possible
to apply more complex constraints. To define constraints in
the most general form, we can introduce a function g : R →
R that takes in the diversity prior to rescaling ŜND and
produces the desired diversity fed as input to DiCo. In this
formulation, we can define the standard constrained version
of DiCo with a function that outputs a constant desired
diversity g(ŜND) = SNDdes. Similarly, we can write the
unconstrained version as g(ŜND) = ŜND. Furthermore,
we can define additional forms of diversity control by using
any continuous function g. For example, one particularly
useful special case is g(ŜND) = max(ŜND,SNDdes) and
g(ŜND) = min(ŜND,SNDdes), which define inequality
constraints (greater than and less than, respectively). Placing
upper or lower diversity bounds can be extremely useful in
practice to reduce the size of the search space or reinforce
some desired behavior (e.g., encouraging exploration, or
avoiding excessive deviation from a known safe strategy).
In practice, it is very easy to adapt DiCo to control diversity
within an upper and/or a lower bound. To implement this, it
is sufficient to avoid rescaling the policies if their diversity
before the scaling process is already in the allowed range.

Analytical Diversity Constraints. In App. N we discuss
an alternative version of DiCo that applies constraints in an
analytical form. Instead of evaluating the diversity of un-
scaled policies to determine the scaling factor, it guarantees
a given diversity over the entire observation space using a
fixed-integral neural network (Kortvelesy, 2023).

Limitations. The main limitation of DiCo is that it requires
a certain degree of domain knowledge in order to determine
the appropriate SNDdes for a given task. Sec. I.1 discusses
this limitation, and proposes solutions to mitigate it. In
future work, we are interested in tackling the issue with an
iterative diversity optimizer, similar to the one outlined in
Sec. G.2. In such a paradigm, the targeted diversity value
provides an additional parameter that can be optimized in
the constrained training process. Lastly, using inequality
constraints instead of an exact diversity can also mitigate
the problem of choosing the desired diversity as it allows to
specify a diversity range instead of a fixed value.

9. Conclusion
We introduce a novel paradigm to control behavioral di-
versity in MARL. Using this paradigm, it is possible to
constrain the policy search space to a desired behavioral
diversity level, improving exploration, performance, and
sample efficiency, as well as leading to the emergence of
novel strategies. Our proposed method, DiCo, achieves
this by representing policies as the sum of a homogeneous
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component and heterogeneous components, which are dy-
namically scaled according the the current and desired value
of a given diversity metric. Unlike existing methods that rely
on additional objectives and discrete actions, the architec-
tural nature of the DiCo constraints enables its applicability
to any actor-critic algorithm with continuous (stochastic or
deterministic) actions. We theoretically prove that DiCo
achieves the desired diversity and empirically demonstrate
its functionality through a case study, which illustrates how
DiCo agents distribute diversity over the observation space.
Finally, our experiments show DiCo’s potential in several ap-
plications, demonstrating how it can be used as a novel tool
to improve performance and sample efficiency in MARL.
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A. Codebase and Links
Multimedia material accompanying the paper can be found on the paper’s website: https://sites.google.com/
view/dico-marl.

The code and running instructions are available on GitHub at https://github.com/proroklab/
ControllingBehavioralDiversity. Documentation has been written for all project files to ease the reproduction
process.

A.1. Hyperparameters

Experiment configurations use the BenchMARL (Bettini et al., 2023a) configuration structure, leveraging Hydra (Yadan,
2019) to decouple YAML configuration files from the Python codebase.

The submitted code files contain thorough instructions on how to install, run, and configure the project.

Configuration parameters can be found in the con f folder, sorted in e x p e r i m e n t , a l g o r i t h m , t a s k , and model
sub-folders. Each file has thorough documentation explaining the effect and meaning of each hyperparameter.

B. Computational Resources Used
For the realization of this work, several hours of compute resources have been used. In particular:

• For the purpose of rapid experimentation, we estimate 500 compute hours using an NVIDIA GeForce RTX 2080 Ti
GPU and an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz.

• For the purpose of running the final experiments on multiple seeds, we estimate 2000 HPC compute hours using an
NVIDIA A100-SXM-80GB GPU and 32 cores of a AMD EPYC 7763 64-Core Processor CPU @ 1.8GHz .

C. Computational Complexity
In the following, we report some aspects related to the computational complexity of DiCo during training and execution.

Execution. Deploying a model trained using DiCo has the same computational cost as deploying an unconstrained
heterogeneous network. This is due to the fact that the policy scaling factor is only updated during training and it is fixed
at execution time. Therefore, a forward pass of the DiCo model (for n agents) will just require one forward pass of the
homogeneous model and one forward pass of each individual agent network, amounting to n+ 1 forward passes. In case of
decentralized deployment (e.g., on physically distinct robots), these would be executed in parallel on separate hardware.
In case of centralized deployment, our implementation uses torch .vmap to batch the n agent calls on GPU, speeding up
computation.

Training. In addition to the costs observed for execution, during training DiCo also needs to update the current diversity
of the unscaled policies. This requires an additional n forward passes of the individual agent networks to compute the
agent actions over the set of evaluation observations O, and n(n−1)

2 calls to the Wasserstein metric to compute the distance
between all agent pairs. In total, this amounts to 2n+ 1 forward passes and n(n−1)

2 calls to Wasserstein (which is a simple
closed-form mathematical expression). Both of these calls can be batched in the inputs (the forward passes are already
implemented this way using torch .vmap).

Therefore, for both training and execution, the number of forward passes (which are usually the time bottleneck) scales
linearly in the number of agents. During training, the number of calls to Wassertein scales quadratically in the number of
agents, as all pairs need to be evaluated.

D. Additional Related Works
In this section we present additional works related to the topic of the paper.

Population diversity. Population-based RL considers evolving a population of agents in order to increase exploration (Wu
et al., 2023). Promoting diversity in such populations has been shown to lead to improved returns (Parker-Holder et al., 2020).
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This approach has successfully been applied to MARL problems (Jaderberg et al., 2019; Vinyals et al., 2019). Charakorn
et al. (2023) proposed a training objective that regularizes agents in a population to find solutions that are compatible with
their partner agents while not compatible with any other agents in the population. However the proposed approach is
limited to 2-player games. Ingvarsson et al. (2023) apply the MAP-Elites Quality-Diversity algorithm to MARL to discover
populations of diverse and high-preforming teams. All the works presented consider the problem of promoting diversity
among agents in a population. In contrast, our work does not train populations of agents and considers the problem of
controlling the behavioral diversity of concurrently acting agents in a task. Further works (Perez-Nieves et al., 2021; Liu
et al., 2021; 2022) introduce novel diversity metrics that they then maximize as part of the learning objective, either via the
use of additional loss terms or intrinsic rewards. In our literature review, we refer to these approaches as ‘diversity boosting’,
and describe their differences from our approach. In particular, the main difference to our work, apart from the type of
games tackled and the population-based context, is that DiCo aims to avoid controlling diversity by augmenting the learning
objective and instead applies diversity constraints directly to the policy structure.

E. DiCo with a General Diversity Metric
This section presents a theorem that defines the property that a diversity metric needs to satisfy in order for Theorem 5.1 to
hold and the metric being usable with DiCo.

Theorem E.1 (DiCo with general diversity metric). Given a general diversity metric M : {πi}i∈N 7→ R≥0, if it holds
that M({πh + cπh,i}i∈N ) = cM({πh,i}i∈N ), for all c ∈ R≥0, then Theorem 5.1 holds for this metric. In particular, when
c = Mdes

M̂
, the diversity of the scaled policies matches the desired diversity:

M

({
πh +

Mdes

M̂
πh,i

}
i∈N

)
= Mdes.

Proof. By applying the property defined in the theorem to the left hand side of the equation, we get:

Mdes

M̂
M
(
{πh,i}i∈N

)
= Mdes.

We know that M̂ is defined as M
(
{πh,i}i∈N

)
. Thus, we can simplify it, leaving:

Mdes = Mdes.

This property implies that a diversity metric M needs:

• to not be dependent on the homogeneous policy component (an assumption that we find reasonable, as this component
is equal for all agents);

• to follow the mathematical property of homogeneity5 (cf(x) = f(cx), a property that, for example, holds for all norm
functions) (here “homogeneity” refers to the mathematical property and not the agent homogeneity from our paper).

Therefore, any diversity measure that is based on the norm of the difference between agent policies will satisfy this
assumption. Several metrics satisfy this property, such as: Hierarchical Social Entropy (HSE) (Balch, 2000) and SND with
the determinant (Parker-Holder et al., 2020) of the behavioral distance matrix (see (Bettini et al., 2023c) for the definition of
such matrix) as the system aggregation function (instead of the mean, as in SND).

Users that want to use DiCo with diversity metrics other than SND and HSE, just need to prove that this property holds for
their desired metric to be able to run DiCo with it.

5https://en.wikipedia.org/wiki/Homogeneous_function
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E.1. Motivation for SND

This paper uses SND as the metric for DiCo. Our choice of SND as the metric employed in this work is motivated by various
reasons. Most of these reasons are introduced in the SND paper (Bettini et al., 2023c). In the following, we report the core
motivations.

Lower level (distance between agents). For the lower level distance between agent policies we are interested in using a
statistical metric that has a closed-form equation for multivariate normal distributions (our policy parametrization). Statistical
divergences (i.e. (symmetric) KL divergence, JS-Divergence) do not follow triangular inequality and thus do not have
the properties of a metric. Furthermore, (symmetric) KL divergence has a value of infinity for Delta distributions, while
Wasserstein has a value equal to the distance between the means. Reinforcement learning policies often converge to Delta
distributions after the exploration phase, and, thus, using KL would lead to infinity distances among agents. For these
reasons, Wasserstein proves a valid candidate that satisfies all our theoretical and practical requirements.

Higher level (system aggregation). The choice of a higher level aggregation function that provides a single scalar given
the matrix of agent distances is a complex one. The purpose of this aggregation is to summarize information about a
particular property of the system, which will inevitably incur in some information loss. In the same way that we cannot
distinguish mean(4, 4, 1) and mean(3, 3, 3), it is common for aggregation functions to map different sets to the same value
(e.g., max(1, 0, 0) = max(1, 1, 0), sum(1, 1, 1) = sum(3, 0, 0)). Therefore, the choice of the aggregation function depends
on the type of information loss that we would like to incur. The main reason why we adopt the mean aggregation from SND
is due to its two core properties presented in (Bettini et al., 2023c): Invariance in the Number of Equidistant Agents and
Measure of Behavioral Redundancy. In particular, the first property allows us to design the target independently from the
number of agents in the task.

F. Proofs of Theorem 5.1.
In this section, we will provide the proofs for Theorem 5.1. We will use the definition of SND reported in Eq. 1 and the
closed-form solution for computing the Wasserstein metric between multivariate normal distributions.

Wasserstein metric for multivariate normal distributions: Let π1 = N (µ1,Σ1) and π2 = N (µ2,Σ2) be two multivariate
normal distributions on Rm. Then, the 2-Wasserstein distance between π1 and π2 is computed as:

W2(π1, π2) =

√
||µ1 − µ2||22 + trace(Σ1 +Σ2 − 2(Σ

1
2
2 Σ1Σ

1
2
2 )

1
2 ) (5)

In this work, we consider policies with the form πi = N (µi, σi), with µi, σi ∈ Rm, where σi is a standard deviation vector
which uniquely defines a diagonal covariance matrix Σi ∈ Rm×m, Σi = diag(σ2

i ).

Proof. Our goal is to prove that:
SND({πi}i∈N ) = SNDdes,

where ŜND = SND({πh,i}i∈N ) in the policy formulation of Eq. 4.

By substituting the SND formulation from Eq. 1 we obtain:

2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

W2(πi(o), πj(o)) = SNDdes.

We further substitute the definition of policies {πi}i∈N from Eq. 4:

2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

W2

(
πh(o) +

SNDdes

ŜND
πh,i(o), πh(o) +

SNDdes

ŜND
πh,j(o)

)
= SNDdes. (6)

This is the formulation we need to prove.

Deterministic policies: We consider deterministic polices πh(o) = [µh(o)], πh,i(o) = [µh,i(o)]. We can thus rewrite Eq. 6
using the W2 formulation from Eq. 5. We observe that the covariance term can be removed, due to the deterministic nature
of the policies.
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2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

√∥∥∥∥(µh(o) +
SNDdes

ŜND
µh,i(o)

)
−
(
µh(o) +

SNDdes

ŜND
µh,j(o)

)∥∥∥∥2
2

= SNDdes.

We notice that µh(o) simplifies. Further, the scaling factor SNDdes

ŜND
can be taken out of all the equation layers as it is positive

and does not depend on i, j, o. We can rewrite as:

SNDdes

ŜND

2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

√
∥µh,i(o)− µh,j(o)∥22 = SNDdes.

We can simplify SNDdes, yielding:

2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

√
∥µh,i(o)− µh,j(o)∥22 = ŜND,

which is true by definition, since we defined ŜND as:

ŜND = SND({πh,i}i∈N )

=
2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

W2(πh,i(o), πh,j(o))

=
2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

√
∥µh,i(o)− µh,j(o)∥22.

Stochastic multivariate normal policies with a homogeneous standard deviation: We consider stochastic policies of the
type πh(o) = [µh(o), σh(o)], πh,i(o) = [µh,i(o), 0].

From the definition of the policies in Eq. 4, we obtain σi(o) = σh(o) + 0 and thus Σi(o) = Σh(o). The covariance term in
W2 from Eq. 5 can be written as:

trace(Σh +Σh − 2(Σ
1
2

hΣhΣ
1
2

h )
1
2 ) = 0.

Thus, it can be removed, and all the same steps from the deterministic policies case can be followed to prove the theorem.
The insight behind this proof is that: if the standard deviation term is computed by the parameter-shared network only, it
does not contribute to the behavioral diversity of the agents’ action distributions.

Stochastic multivariate normal policies with a heterogeneous standard deviation: We consider stochastic policies of
the type πh(o) = [µh(o), 0], πh,i(o) = [µh,i(o), σh,i(o)].

From the definition of the policies in Eq. 4, we obtain σi(o) = 0 + SNDdes

ŜND
σh,i(o) and, thus, Σi(o) =

(
SNDdes

ŜND

)2
Σh,i(o)

The covariance term in W2 from Eq. 5 becomes:

trace

((
SNDdes

ŜND

)2

Σh,i(o) +

(
SNDdes

ŜND

)2

Σh,j(o)

−2

((SNDdes

ŜND

)2

Σh,j(o)

) 1
2 (

SNDdes

ŜND

)2

Σh,i(o)

((
SNDdes

ŜND

)2

Σh,j(o)

) 1
2


1
2

 .
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Since Σh,i(o) and Σh,j(o) are diagonal matrices, we can take the scaling factor to the outer layer of the equation:

(
SNDdes

ŜND

)2

trace

(
Σh,i(o) + Σh,j(o)− 2

(
Σh,j(o)

1
2Σh,i(o)Σh,j(o)

1
2

) 1
2

)
.

By substituting W2 in Eq. 6 we get:

2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

(∥∥∥∥(µh(o) +
SNDdes

ŜND
µh,i(o)

)
−
(
µh(o) +

SNDdes

ŜND
µh,j(o)

)∥∥∥∥2
2

+

(
SNDdes

ŜND

)2

trace

(
Σh,i(o) + Σh,j(o)− 2

(
Σh,j(o)

1
2Σh,i(o)Σh,j(o)

1
2

) 1
2

)) 1
2

= SNDdes,

which can be rewritten as:

SNDdes

ŜND

2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

(
∥(µh(o) + µh,i(o))− (µh(o) + µh,j(o))∥22 +

trace

(
Σh,i(o) + Σh,j(o)− 2

(
Σh,j(o)

1
2Σh,i(o)Σh,j(o)

1
2

) 1
2

)) 1
2

= SNDdes,

We can simplify SNDdes, yielding:

2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

(
∥µh,i(o)− µh,j(o)∥22 +

trace

(
Σh,i(o) + Σh,j(o)− 2

(
Σh,j(o)

1
2Σh,i(o)Σh,j(o)

1
2

) 1
2

)) 1
2

= ŜND,

which is true by definition, since we defined ŜND as:

ŜND = SND({πh,i}i∈N )

=
2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

W2(πh,i(o), πh,j(o))

=
2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∑
o∈O

(
∥µh,i(o)− µh,j(o)∥22 +

trace

(
Σh,i(o) + Σh,j(o)− 2

(
Σh,j(o)

1
2Σh,i(o)Σh,j(o)

1
2

) 1
2

)) 1
2

.

G. Additional Method Details
In this section, we provide further details about the methods.
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G.1. DiCo Pseudocode

In Alg. 1, we present the pseudocode for policy evaluation in DiCo. This process is depicted in Fig. 1. In lines 2-4, the
estimated diversity is initialized at the desired value. In lines 5-8, the training process recomputes it using a soft update.
Lastly, in lines 9-11 the multi-agent outputs are computed over the observation batch according to the policies formulation
from Eq. 4.

Algorithm 1 Policy evaluation in Diversity Control (DiCo).
1: Input: observation batch O, homogeneous policy πh, heterogeneous policies πh,0, . . . , πh,n, soft-update coefficient τ ,

desired diversity SNDdes

2: if Init then
3: ŜND = SNDdes

4: end if
5: if Training then
6: Compute SND({πh,i}i∈N ) over O

7: ŜND = τSND({πh,i}i∈N ) + (1− τ)ŜND
8: end if
9: for i ∈ N do

10: πi(O) = πh(O) + SNDdes

ŜND
πh,i(O)

11: end for

G.2. Closed-Loop Diversity Control

DiCo provides a new control input (SNDdes) which constrains multi-agent policies to the desired diversity. However, in
tasks where a prior on the desired diversity is not available, determining its value might not be straightforward. Furthermore,
since training optimizes only for returns, this additional input could be used to optimize a secondary metric of interest (e.g.,
resilience).

In this section, we present the pseudocode of an algorithm that can be used to automatically control diversity using a
closed-loop PID controller (Ang et al., 2005) to optimize a metric M of interest, given a desired metric value Mdes. This
metric can be defined by the user to measure properties of interest of the desired system. For example, a user might be
interested to train a system achieving a certain success in the face of agent failures or noise. To achieve the desired result,
they would design a metric M that reflects the desired properties and use it to optimize SNDdes. The code is reported in
Alg. 2.

Lines 4-11 iteratively train the system at different diversity levels SNDdes, trying to minimize the error e = Mdes −M . The
PID terms of the controller take into account the error variation over time and its accumulated value. In line 11, the iteration
process is terminated as soon as the error falls within a predetermined bound −ϵ < e < ϵ.

Algorithm 2 PID control loop to optimize a desired metric using DiCo.
1: Input: metric to optimize M , desired metric value Mdes, initial desired diversity SNDinit, error tolerance ϵ, PID control

parameters Kp,Kd,Ki

2: SNDdes = SNDinit

3: e = eaccu = 0
4: repeat
5: Train agents at SNDdes over multiple seeds
6: Compute aggregate metric M over training runs
7: eprev = e
8: Compute error e = Mdes −M
9: eaccu = e+ eaccu

10: SNDdes = max(Kpe+Kd(e− eprev) +Kieaccu, 0)
11: until −ϵ < e < ϵ
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G.3. Maximum SND for a Bounded Action Space

SND is a metric that ranges from 0 to infinity. When considering bounded action spaces and deterministic actions (πi = [µi]),
the metric can furtherly be bounded6.

Given an action domain with a lower bound amin ∈ Rm, an upper bound amax ∈ Rm, and a set of actions µi ∈ Rm,∀i ∈ N ,
the maximum SND is the solution to the following convex problem:

max
{µi}i∈N

2

n(n− 1)

n∑
i=1

n∑
j=i+1

∥µi − µj∥2

s.t.

akmin ≤ µk
i ∀k ∈ [1, . . . ,m],∀i ∈ N

µk
i ≤ akmax ∀k ∈ [1, . . . ,m],∀i ∈ N .

This problem can be solved using open-sourced and free to use convex optimization solvers, such as CVXPY (Diamond &
Boyd, 2016).

G.4. Disincentivizing Diversity Outside the Action Space

In the context of bounded action spaces [amin, amax] with amin, amax ∈ Rm, and deterministic actions, increasing the
diversity of the rescaled policies from Eq. 4 might lead to action means µi outside the action space boundaries. Since actions
are clamped to the domain bounds, placing diversity outside of the action bounds could be leveraged by the learning agents
to bypass the constraint. This is because, placing an increasing amount of diversity in a specific observation, will correspond
to the same diversity in the actual actions taken only if the actions are within the domain.

To discourage diversity outside the action bounds, we employ an additional objective:

Lact(o) = max
i

(∥µi(o)− clip(µi(o), amin, amax)∥2) , (7)

which penalizes the maximum overflowing action norm over the agents.

H. Soft Update τ Comparison
To further evaluate the soft-update mechanism proposed in Sec. 5.2, we run a comparison across different values of τ and
report the results in Fig. 7. The comparison has been run on the Multi-Agent Navigation scenario with SNDdes = 1 for
τ = 0.1, 0.01, 0.001, 0.001 with 4 different seeds for each value.

It is possible to observe that lower values of τ result in lower variance of the measured SND at the price of an overshoot in
the mean value, taking longer to converge. Higher values of τ , on the other hand, present a lower error in tracking the mean,
at the price of a higher variance and instability around the target value in the earlier stages of training. The results of this
comparison empirically confirm the claim made in Sec. 5.2.

6In the case of stochastic actions, σi(o) is not bounded and thus diversity can go to infinity in its growth.
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Figure 7. τ comparison on the Multi-Agent Navigation scenario with SNDdes = 1. The comparison shows that lower values of τ result in
lower variance but overshoot the desired diversity, while higher values track the desired diversity with higher variance. Curves report
mean and standard deviation for the IPPO algorithm over 4 training seeds.

I. Further Analyses from Case Study: Multi-Agent Navigation

This section presents additional experiments and result analyses on the Multi-Agent Navigation case study.

I.1. Setting the Desired Diversity Too High

Figure 8. Illustration of the Multi-Agent Navigation case study with an example of a high diversity requirement complementing Fig. 2.
Left: Mean instantaneous reward for agents trained with different desired diversities. Center: SND({πi}i∈N ) evaluated for agents
trained with different desired diversities. Right: Renderings of the diversity distribution over the observation space for agents constrained
at a high desired diversity. Curves report mean and standard deviation over 4 training seeds.

In Sec. 6 we have shown how DiCo can be used to control diversity to different desired values and the impact that this
method had on learning in the Multi-Agent Navigation task. It is however important to discuss what are the implications of
setting the desired diversity “too high”. In Fig. 8, we report the results for training runs with SNDdes = 1.5. It is shown
how such a diversity value leads to unstable learning in this scenario, with agent policies not able to converge to the desired
behavior. This is due to the fact that such a high diversity demand prevents the agents from acting homogeneously even in
the observations where this is needed and, thus, never experience and learn from such transitions. Therefore, the agents are
not able to learn to distribute diversity over the observation space, resulting in the almost uniform diversity distributions
shown in the right of Fig. 8.

Determining what characterizes an excessive desired diversity depends on the task. To estimate this, it is possible to
perform multiple training runs at different desired diversity levels, observing the threshold above which training stability
is compromised. To get an estimate of a representative diversity range for a task, it is also possible to train agents with
unconstrained diversity and measure their SND value. Lastly, in tasks with bounded action spaces, solving the optimization
problem introduced in Sec. G.3 yields an upper bound to the maximum diversity obtainable in the task.
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I.2. Navigating to the Same Goal

Figure 9. Illustration of the Multi-Agent Navigation case study when agents need to navigate to the same goal. Top left: Mean instantaneous
reward for agents trained with different desired diversities. Top right: SND({πi}i∈N ) evaluated for agents trained with different desired
diversities. Bottom: Renderings of the diversity distribution over the observation space (colormap legend available in Fig. 2) for agents
trained with different desired diversities. Agents with a low diversity budget are able to reach the goal with similar policies. As the
desired diversity increases, agents need to find different strategies to achieve the same objective, trading off performance for diversity. All
strategies present the common characteristic of placing diversity away from the observations near the goal, where it is most important to
act homogeneously. Curves report mean and standard deviation for the IPPO algorithm over 4 training seeds.

The Multi-Agent Navigation task, discussed in Sec. 6, represents an example of a task where a certain degree of diversity is
needed for successful completion. In this section, we are interested in analyzing a variation of this task where the optimal
policy requires homogeneous behavior. In particular, we modify the task such that both agents need to navigate to the same
goal (still spawned at random). In this setup, the optimal policy consists in all agents traveling towards the observed goal,
requiring a diversity of 0.

As before, we train agents at different desired diversity levels (SNDdes = 0, 0.1, 0.3, 0.4, 0.5, 1) and with unconstrained
heterogeneous policies (Eq. 3). The results are reported in Fig. 9. As expected, the measured diversity (SND({πi}i∈N )),
shown in the top right, matches the desired values. Looking at the reward curves in the top left, we confirm the hypothesis
that heterogeneity is detrimental to performance in this task. In fact, we observe a decrease in reward and training stability
as the desired diversity increases, with the best performance achieved by the homogeneous model (SNDdes = 0). It is also
noticeable that all models learn to place lower diversity in positions nearing the goal, trying to place the unwanted diversity
budget far from this region. Learning this strategy becomes harder as the diversity budget increases, and starts becoming
impossible at high diversity values (SNDdes = 1), where only one agent is able to reach the goal and the other is forced to
take completely different actions.

We also note that, the unconstrained model, while learning the optimal policies, presents a diversity value varying through
training. This is due to the bigger policy search space deriving from the lack of constraints and leads to slower convergence
and more instability than low-diversity constrained models (SNDdes = 0, 0.1), showcasing another advantage of DiCo, that,
thanks to our prior on the heterogeneity required by the task, enforces a low diversity and simplifies learning.
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J. Dispersion Trajectory Analysis

(a) SNDdes = 0.

(b) Unconstrained.

(c) SNDdes = 6.

Figure 10. Dispersion trajectory renderings from the results in Fig. 4. Rollouts evolve from left to right. Videos of these trajectories are
available on the paper website.

In this section, we complement the Dispersion results discussed in Sec. 7.1 by analyzing the trajectories of the models
trained in Fig. 4. In Fig. 10, we report the trajectory renderings.

Fig. 10(a) shows the trajectory of homogeneous agents (SNDdes = 0). We can observe that homogeneous agents learn to
visit one food particle at a time in a group. This is because, given the same observation, they need to take the same action,
and, starting in the same position, this process leads them to all take the same actions and visit the same positions. The small
variations in positions, visible from the 4th frame onwards, are due to the exploration noise added to incentivize training
exploration, that, however, does not help agents learn different policies.

Fig. 10(b) shows the trajectory of unconstrained heterogeneous agents (Eq. 3). These agents are able to tackle different
goals, however, we can see that the learned policy is still suboptimal. In fact, while two agents respectively consume the two
food particles at the top, the remaining two tackle the same particle in the bottom right. After these three particles have been
consumed, two agents (one from the top and one from the bottom) both navigate to the last particle. This behavior obtains a
suboptimal reward as it would have taken less time to send each agent to a different particle.

Fig. 10(c) shows the trajectory of heterogeneous agents with constrained diversity SNDdes = 6. This diversity constraint
forces agent to a higher SND than the one achieved by the unconstrained heterogeneous model. Thanks to this, agents are
able to discover sooner the optimal policy. We can see this in the rollout, where agents immediately travel to a different food
particle, thus completing the task in the least time needed.
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K. Sampling Trajectory Analysis

(a) SNDdes = 0.

(b) Unconstrained.

(c) SNDdes = 5.

Figure 11. Sampling trajectory renderings from the results in Fig. 5. Rollouts evolve from left to right. Videos of these trajectories are
available on the paper website.

In this section, we complement the Sampling results discussed in Sec. 7.2 by analyzing the trajectories of the models trained
in Fig. 5. In Fig. 11, we report the trajectory renderings.

Fig. 11(a) shows the trajectory of homogeneous agents (SNDdes = 0). We can observe that homogeneous agents visit the
same area of the sampling space while remaining grouped together. This is because, given the same observation, they need
to take the same action, and, starting in the same position, this process leads them to all take the same actions and visit
the same positions. The small variations in positions, visible from the 4th frame, are due to the exploration noise added to
incentivize training exploration, that, however, does not help agents learn different policies.

Fig. 11(b) shows the trajectory of unconstrained heterogeneous agents (Eq. 3). These agents can take different actions for
the same observation and, thanks to this, they are able to begin the rollout by moving in different directions. However, from
the 5th frame onward, they begin converging towards the same area (in the bottom center of the workspace). By the end of
the task, they present a significantly improved coverage than their homogeneous counterparts, but still with some cells that
have been visited more than once by different agents, making their policy suboptimal.

Fig. 11(c) shows the trajectory of heterogeneous agents with constrained diversity SNDdes = 5. This diversity constraint
forces agents to a higher SND than the one achieved by the unconstrained heterogeneous model. Under this constraint, the
agents achieve a better spread over the sampling space, moving along the workspace diagonals following a zig-zag pattern.
They then move back diagonally without ever crossing paths.

An interesting observation can be made by focusing on the first frame of all renderings in Fig. 11. Here we can observe all
agents being spawned in the same position in the center of the workspace at the beginning of the task. This is a particularly
interesting observation, as all agents are observing the same policy input. This is also one of the observations where they need
to act most differently in order to avoid sampling the same cells in the subsequent timestep. As expected, homogeneous agents
all take the same action, which is quite suboptimal, leading them all to the same next state. Unconstrained heterogeneous
agents improve upon this, with their actions forming two 90º and one 180º angles. Constrained heterogeneous agents show
the best action spread, almost resembling three 120º angles.
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L. Tag Trajectory Analysis

(a) SNDdes = 0.

(b) Unconstrained.

(c) Ambush emergent strategy (SNDdes = 0.6).

(d) Cornering emergent strategy (SNDdes = 0.6).

(e) Blocking emergent strategy (SNDdes = 0.6).

Figure 12. Tag trajectory renderings from the results in Fig. 6. Rollouts evolve from left to right. Videos of these trajectories are available
on the paper website.

In this section, we complement the Tag results discussed in Sec. 7.3 by analyzing the trajectories of the models trained in
Fig. 6. In Fig. 12, we report the trajectory renderings.

In Fig. 12(a) and Fig. 12(b) we report the trajectories of homogeneous agents (SNDdes = 0) and unconstrained heterogeneous
agents (Eq. 3). Both models present a similar strategy, consisting in both red agents navigating towards the green one,
following the shortest path. This strategy is well known to be suboptimal in ball games like soccer, where inexperienced
players tend to group on the ball, resulting in poor spatial coverage.

Continuing with this analogy, we take on a coaching role and constrain agents to a higher diversity (SNDdes = 0.6). We
observe that this higher diversity constraint induces higher achieved rewards and emergent strategies that leverage agent
complementarity. We highlight three examples of such strategies (Fig. 12(c), Fig. 12(d), Fig. 12(e)).

In Fig. 12(c), we observe how the red agents are able to perform an “ambush” maneuver, splitting around the obstacle (from
the 3rd frame). While the right agent performs a close chase, the left agent takes a longer trajectory, which, in the long term,
enables it to cut off the green agent. We can see how diversity helped in this scenario: if both agents followed the evader
into the passage, the green agent would have had a free escape route on the other side and the chase would have continued in
a loop as in Fig. 12(a).

In Fig. 12(d), we observe how the red agents are able to coordinate in a pinching maneuver, cornering the evader in an
inescapable state. While one agent lures the evader into a corner (frames 1 to 7), the other agent approaches, progressively
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closing the escape routes available to the green agent. Eventually, the green agent remains stuck in the corner without any
possibility of movement.

Lastly, in Fig. 12(e) we report a strategy where one red agent focuses on blocking the escape routes of the green agent,
while the other red agent gathers rewards. In this strategy, more subtle to understand, the red agent in the top performs
man-to-man marking (similar to what is done in sports) at a distance. As the green agent moves, this agent tracks its position,
blocking access to the top half of the environment by being ready to intercept any movement in that direction. In doing so, it
effectively reduces the maneuvering space available to the green agent, making tagging easier for the other red agent.
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Figure 13. Results from training agents with different constraints on the Reverse Transport task. Left: Mean instantaneous reward. Right:
Measured diversity SND({πi}i∈N ). Curves report mean and standard deviation for the IDDPG algorithm over 3 training seeds.

M. Reverse Transport: Injecting a Prior Through Diversity Constraints
In this work, we have mainly shown applications where diversity constraints that force a higher diversity than the one
achieved by unconstrained policies can be used to obtain higher performance. In this section, we show that, by leveraging
user priors about the role of heterogeneity in a task, it is also possible to improve the training process by forcing a lower
diversity than the one achieved by the unconstrained method.

We consider the Reverse Transport (Fig. 3(d)) task. In this task, n agents are placed inside a square red package, spawned at
random. The agents are collectively rewarded for pushing the package towards a randomly spawned goal. They observe
their position, velocity, relative distance to the package, and the package’s relative distance to the goal. Agent actions are 2D
forces that determine their motion. Our hypothesis is that the optimal policy in this task requires little heterogeneity, as it is
beneficial for the agents to all perform the same pushing action.

We train n = 4 agents using IDDPG with different DiCo constraints, as well as unconstrained heterogeneous polices. In
Fig. 13, we report the mean instantaneous training reward and the measured diversity. The results show that the agents with
a lower diversity (SNDdes = 0, 0.1) achieve the optimal reward faster. Unconstrained heterogeneous policies learn a higher
diversity, resulting in slower convergence. Furthermore, DiCo models with a diversity higher than the unconstrained ones
(SNDdes = 1.2) show even more suboptimal curves, confirming our prior on the required homogeneity for the task. This
shows that the greater sample efficiency of homogeneous agents can be leveraged by setting low DiCo constraints in tasks
where a prior on the required heterogeneity is available. While the policies with SNDdes = 0.1 achieve similar rewards to
the homogeneous ones, they allow for a small degree of diversity, which might be preferred due to its intrinsic resilience
properties (Bettini et al., 2023b).
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N. Analytical Diversity Control
In this paper, we control diversity by scaling deviations of heterogeneous agents from a homogeneous policy, normalized
by an empirically calculated ŜND. The set of observations O over which this ŜND is calculated dictates the distribution
of states where the heterogeneity constraint is enforced. In many applications, this is useful—by selecting O as a set of
observations from rollouts, we can ensure that all heterogeneity is placed in regions that will actually be visited. However,
there exist other applications where one might wish to define an analytical diversity constraint over the whole observation
space (note that this can result in a different measured SND({πi}i∈N ) than the given SNDdes, as samples from rollouts do
not form a uniform distribution over the observation space).

In this section, we propose a method for applying analytical diversity constraints to a system. The core of this approach
is an architecture that fundamentally incorporates a diversity constraint, without the need to perform a sum over a set of
observations O, as in Eq. 1. In order to formulate this new method, we must first redefine an integral-based form of SND:

SNDI({πi}i∈N ) =
2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∫
O
W2(πi(o), πj(o)) do. (8)

For convenience, we also recall the definition of SNDo from Sec. 6, that measures SND for a given observation o:

SNDo(o) = SNDo({πh,i}i∈N , o) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

W2(πh,i(o), πh,j(o)). (9)

Now, we must find a way to compute
∫
O W2(πi(o), πj(o)) do, the integral of an expression containing learned functions

{πi}i∈N over the entire observation space. To do this, we use a Fixed Integral Neural Network (FINN) (Kortvelesy, 2023), a
method that enables the analytical evaluation of a learned multivariate function f(x) and its integral F (x)|A =

∫
A
f(x) dx.

In this application, f represents the amount of system heterogeneity allocated to a given observation:

f(o) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

W2(πi(o), πj(o)). (10)

Integrating f(o) over the observation space O, F (o)|O
|O| is equivalent to SNDI from Eq. 8. Rescaling to achieve a particular

diversity is handled by FINN, which can internally place constraints over F . We supply an equivalence constraint with
the value |O|SNDdes, ensuring F (o)|O

|O| = SNDI({πi}i∈N ) = SNDdes. Using FINN’s positivity constraint, we further
constrain f to be strictly non-negative, as it is impossible for an SNDI to be less than 0.

Given these preliminaries, we can reformulate the policies in terms of f :

πi(o) = πh(o) +
f(o)

SNDo(o)
πh,i(o). (11)

Theorem N.1. Using the analytical formulation of DiCo in Eq. 11 and the definition of SNDI in Eq. 8, the property
SNDI({πi}i∈N ) = SNDdes is satisfied.

Proof. We wish to show that the SNDI (Eq. 8) computed with the analytical formulation of DiCo (Eq. 11) equals SNDdes.

2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∫
O
W2

(
πh(o) +

f(o)

SNDo(o)
πh,i(o), πh(o) +

f(o)

SNDo(o)
πh,j(o)

)
do = SNDdes. (12)

First, we rewrite Eq. 12 with the definition of W2 from Eq. 5. We focus on the case of deterministic policies. Proofs for the
other cases can be obtained by following the steps in App. F.
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2

n(n− 1)|O|
n∑

i=1

n∑
j=i+1

∫
O

√∥∥∥∥(µh(o) +
f(o)

SNDo(o)
µh,i(o)

)
−
(
µh(o) +

f(o)

SNDo(o)
µh,j(o)

)∥∥∥∥2
2

do = SNDdes. (13)

The µh(o) terms cancel, allowing us to pull f(o) and SNDo(o) out of the root. We also move the summations and leading
constant term into the integral:

1

|O|

∫
O
f(o)

2
n(n−1)

∑n
i=1

∑n
j=i+1 ∥µh,i(o)− µh,j(o)∥2
SNDo(o)

do = SNDdes. (14)

Note that the numerator of the fractional term is equivalent to SNDo(o), so the entire fraction cancels. We replace
∫
O f(o)do

with F (o)
∣∣
O, and multiply both sides by |O|:

F (o)
∣∣
O = |O|SNDdes. (15)

We are left with the constraint that we imposed, which is guaranteed by FINN. Thus, the system is analytically constrained
to the desired diversity.

Figure 14. Illustration of the Multi-Agent Navigation case study with analytical diversity control. Top left: Mean instantaneous reward for
agents trained with different desired diversities. Top right: SND({πi}i∈N ) evaluated for agents trained with different desired diversities.
Bottom: Renderings of the diversity distribution over the observation space (colormap legend available in Fig. 2) for agents trained with
different desired diversities. Curves report mean and standard deviation for the MADDPG algorithm over 3 training seeds.

As a preliminary experiment, we train analytical DiCo on the Multi-Agent Navigation task with heterogeneous goals. As
shown in Fig. 14, the reward scales with increasing diversity, just as it does in the same task with standard DiCo. The
visualizations show that the placement of the diversity is also similar to the standard approach, whereby the space between
the goals is prioritized. Note that the value of the measured SND does not exactly match the given SNDdes, as the SNDI

constraint is guaranteed over the entire observation space, while the calculated SND is only computed over observations
seen in rollouts. However, the relative change in SND is consistent, with higher SNDdes leading to higher measured SND.

This experiment empirically demonstrates the ability of analytical DiCo to apply a neural diversity constraint across the
entire observation space. This theoretical guarantee can be useful in offline RL applications, where it is imperative to
generalize to states that were not visited during training. It also provides a new way of viewing SND: not as a metric that is
computed over a set of observations, but rather as a fundamental property of the set of policies themselves.
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