
Automatically report and plot your BenchMARL results

using statistically-strong integrated tools [1,2].

Interactively log your results on Wandb and compare with

the publicly available benchmarks:

We are benchmarking and releasing results for

BenchMARL tasks. 	

Check out the results in the VMAS environment: 	

Reporting and plotting

Each component in the library has an associated abstract class. This makes it easy to

integrate custom algorithms, models, and tasks, allowing to compare them against the

wide repository of already implemented ones.

Extending

We support custom callbacks in various phases of training. Experiments can also be

checkpointed and reloaded for evaluation or deployment on robotic platforms.

Callbacks and checkpointing

Component documentation is available online and full training integration tests are run for

each task-algorithm combination.

Documentation and tests

Matteo Bettini, Amanda Prorok, Vincent Moens

BenchMARL
Benchmarking Multi-Agent Reinforcement Learning

python benchmarl/run.py -m
seed=0
task=vmas/balance
model=layers/mlp
algorithm=ippo,qmix,maddpg

Algorithm

Task

Benchmark

Model

INPUT OUTPUT

ExperimentConfigRun a benchmark with 3
experiments

Experiment (ippo)

Experiment (qmix)

Experiment (maddpg)

BenchMARL

Docs

Mix & match your model, algorithm, and task and start to BenchMARL!

Vmas results - aggregated over tasks Vmas results - per task

[1] Agarwal, Rishabh, et al. "Deep reinforcement learning at the edge of the statistical precipice." Advances in neural

information processing systems 34 (2021): 29304-29320.	

[2] Gorsane, Rihab, et al. "Towards a standardised performance evaluation protocol for cooperative marl." Advances in

Neural Information Processing Systems 35 (2022): 5510-5521.

FeaturesConfiguring

BenchMARL uses Hydra to load configurations from YAML files into

Python dataclasses. This allows to easily override and sweep parameters

while decoupling them from the codebase.
YAML configuration file

for the MASAC algorithm

BenchMARL core design guidelines:	

 • Reproducibility	

 • Standardized reporting	

 • TorchRL backend	

 • Experiment independence	

 • Easy integration of new solutions

The TorchRL backend allows BenchMARL

to re-use extensively-benchmarked 	

single-agent implementations.

Loaded and type-

checked lazily

Python dataclass	

for the MASAC algorithm

BenchMARL's features fucus on enabling its

core tenets: standardization and

reproducibility.

Code

Algorithms
Algorithms are an ensemble of components (e.g., loss, replay buffer,

exploration strategy) that determine the training strategy.

BenchMARL

Algorithms

Actor-Critic Q-Learning

On-Policy Off-Policy

MAPPO

IPPO

MADDPG

MASAC

IDDPG

ISAC

Value

Factorization

QMIX

VDN

IQL

Tasks

Environment # Tasks

VMAS

SISL

MPE

Melting Pot

SMACv2

27

8

3

15

49

Tasks are scenarios from a simulated environment which

constitute the MARL challenge to solve.

Models
Models are neural network blueprints that can be

chained to make actors and critics with or without

parameter sharing.

Model Policy

Critic
Local

input

Global

input

MLP

CNN

Deep Sets

GNN

Created
by
Oleksandr
Panasovskyifrom
the
Noun
Project

