e LAB

MARL

Matteo Bettini, Amanda Prorok, Vincent Moens

O PyTorch

Benchmarking Multi-Agent Reinforcement Learning m Meta

Mix & match your model, algorithm, and task and start to BenchMARL!

Models Algorithms

Tasks

Models are neural network blueprints that can be Algorithms are an ensemble of components (e.g., loss, replay buffer, Tasks are scenarios from a simulated environment which
chained to make actors and critics with or without exploration strategy) that determine the training strategy. constitute the MARL challenge to solve.
parameter sharing. Environment # Tasks
Critic BenchMARL
Loca| G|Qba| Algorithms
Model Policy input input T VMAS 27
% V V V Q-Learning
MLP
ﬂ SISL 3
GNN ﬂ - @
o. MPE 8
Deep Sets Melting Pot 49

- . - . . . O O O O

Run a benchmark with 3

experiments

@ExperimentConfig]

python benchmarl/run.py —-m

Algorithm Ji

?

seed=0
task=vmas/balance
model=layers/mlp

algorithm=ippo, gmix, maddpg

on T mm mm mm o = o = o Em e Ee Em e E—
—_een e e e e e e e e e e e o - -

®®

Reporting and plotting

Experiment (maddpg)

(=
0

QTS

—e— VDN

—e— MADDPG

—e— MAPPO

—e— QL
Optimality Gap
l

0.85 0.90 0.95 1.00 0.88 0.92 0.96 1.00 0.88 0.92 0.96 0.04 0.08 0.12

Normalized return

Vmas results - aggregated over tasks

| |
. | 08 |
Automatically report and plot your BenchMARL results , - ,
using statistically-strong integrated tools [1,2]. : . Sors| |
2 = —— QMIX
I 5 z —— VDN I
Interactively log your results on Wandb and compare with ! e s !
the publicly available benchmarks: & --@ : Timee §025| T : () Sampiing tsk () Sentng v e
'.11-:‘:‘::\&“‘ ¥ ' ' o3 EE{@ Lto.oo — :;AD(;G | :
:‘* 35%' 0;. V4 - - :- - -> °° o2 I\(I)L‘JLrlnber of timeste(i))ls6 oe IDDP??E’ > o Norn?;llized rei(:)ljfn (1) > 0 : s .'
o [+ .
(O % " : (a) Sample efficiency curves. (b) Performance profile. : i/
Median IQM Mean Optimality Gap ; . ;
We are benchmarking and releasing results for : : IDDPG . L. - mm e
BenchMARL tasks. ’ I T - - | ™ _—_
SR o " . = a af"® !
Check out the results in the VMAS environment: = ~ ; JoN ' ' L
! MASAC 1 0 Il i |
[1] Agarwal, Rishabh, et al. "Deep reinforcement learning at the edge of the statistical precipice." Advances in neural I 0.85 0.90 0.95 1.00 0.88 0.92 0.96 1.00 0.88 0.92 0.96 0.04 0.08 0.12 I e

information processing systems 34 (2021): 29304-29320.
[2] Gorsane, Rihab, et al. "Towards a standardised performance evaluation protocol for cooperative marl." Advances in
Neural Information Processing Systems 35 (2022): 5510-5521.

Configuring

BenchMARL uses Hydra to load configurations from YAML files into
Python dataclasses. This allows to easily override and sweep parameters = = = = = = =
while decoupling them from the codebase.

Extending

Each component in the library has an associated abstract class. This makes it easy to
integrate custom algorithms, models, and tasks, allowing to compare them against the
wide repository of already implemented ones.

Callbacks and checkpointing

We support custom callbacks in various phases of training. Experiments can also be
checkpointed and reloaded for evaluation or deployment on robotic platforms.

Documentation and tests

Component documentation is available online and full training integration tests are run for
each task-algorithm combination.

Normalized return

(c) Aggregate scores.

masac.yaml

defaults:
- self

> share_param_critic: True
num_gvalue_nets: 2

loss_function: "12"

delay_gvalue: True

target_entropy: "auto"
discrete_target_entropy_weight: 0.2
alpha_init: 1.0

min_alpha: null

max_alpha: null

fixed_alpha: False

scale_mapping:

Python dataclass
for the MASAC algorithm

YAML configuration file
for the MASAC algorithm

Loaded and type-
checked lazily

share _param_critic: bool = MISSING
num_qgvalue_nets: int = MISSING
loss_function: str = MISSING
delay_qgvalue: bool = MISSING

target_entropy: Union[float, str] = MISSING
discrete_target_entropy_weight: float = MISSING
alpha_init: float = MISSING

min_alpha: Optionallfloat] = MISSING

max_alpha: Optionallfloat] = MISSING
fixed_alpha: bool = MISSING

scale_mapping: str = MISSING

(e) Balance task. (f) Balance reward curves.

Features

BenchMARL's features fucus on enabling its
core tenets: standardization and
reproducibility.

BenchMARL core design guidelines:
- Reproducibility
- Standardized reporting
- TorchRL backend
- Experiment independence
- Easy integration of new solutions

The € TorchRL backend allows BenchMARL
to re-use extensively-benchmarked
single-agent implementations.

