With my supervisor, Amanda Prorok, I study resilience and heterogeneity in multi-agent and multi-robot systems. For my research, I employ techniques from the fields of Multi-Agent Reinforcement Learning and Graph Neural Networks.
Prior to my PhD, I investigated the problem of transport network design for multi-agent routing.
Download my CV.
PhD in Computer Science, Present
University of Cambridge
MPhil in Advanced Computer Science, 2021
University of Cambridge
BEng in Computer Engineering, 2020
Politecnico di Milano
We introduce Diversity Control (DiCo), a method able to control diversity to an exact value of a given metric by representing policies as the sum of a parameter-shared component and dynamically scaled per-agent components. By applying constraints directly to the policy architecture, DiCo leaves the learning objective unchanged, enabling its applicability to any actor-critic MARL algorithm. We theoretically prove that DiCo achieves the desired diversity, and we provide several experiments, both in cooperative and competitive tasks, that show how DiCo can be employed as a novel paradigm to increase performance and sample efficiency in MARL.
To find relevant content, try searching publications or filtering using the buttons below.
*